Report No: P WMA 19/G10/00/2413/2

DEPARTMENT OF WATER AFFAIRS DIRECTORATE : OPTIONS ANALYSIS

PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

Report No 1 : Ecological Water Requirement Assessments

Volume 2 : Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary

Final

June 2012

Department of Water Affairs Directorate: Options Analysis

PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

APPROVAL

:	Ecological Water Requirement Assessments Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary
:	Western Cape Water Consultants Joint Venture
:	Final
:	June 2012
	:

STUDY TEAM: Approved for the Joint Venture:

 \leq CA Brown (EWR Task Leader)

AHM GÖRGENS (Part

DEPARTMENT OF WATER AFFAIRS Directorate : Options Analysis Approved for Department of Water Affairs:

M MUGUMO Chief Engineer Options Analysis

LS MABUDA

LS MABUDA Chief Director Integrated Water Resource Planning

This report is to be referred to in bibliographies as:

Department of Water Affairs, South Africa. 2012. *Report No.1 : Ecological Water Requirement Assessments, Volume 2 – Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary.* Prepared by Western Cape Water Consultants Joint Venture, as part of the Pre-feasibility and Feasibility Studies for Augmentation of the Western Cape Water Supply System by Means of Further Surface Water Developments.

Prepared by:	Western Cape Water Consultants Joint Venture PO Box 494 Cape Town South Africa 8000				
	Tel: E-mail:	021 – 526 9400 graham.english@aurecongroup.com			
Prepared for:	Director: (Departme Private Ba Pretoria South Afr	Options Analysis ent of Water Affairs ag X313 ica			
	Tel: E-mail:	012 - 336 8477 <u>mugumom@dwa.gov.za</u>			

STUDY REPORT LIST

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Riverine Environmental Water Requirements
				Appendix 1: EWR data for the Breede River
			P\WMA19	Appendix 2: EWR data for the Palmiet River
		Vol 1	G10/00/2413/1	Appendix 3: EWR data for the Berg River
				Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers
				Appendix 5: Habitat Integrity Report – Breede River
				Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary
		Vol 2	PWMA19	Appendix A: Summary of data available for the RDM investigations undertaken during 2007 and 2008
	ECOLOGICAL		G10/00/2413/2	Appendix B: Summary of baseline data requirements and the long- term monitoring programme
1 WATER REQUIREMENT ASSESSMENTS			Appendix C: Abiotic Specialist Report	
	ASSESSMENTS			Berg Estuary Environmental Water Requirements
		Vol 3		Appendix A: Available information and data
				Appendix B: Measurement of streamflows in the Lower Berg downstream of Misverstand Dam
				Appendix C: Specialist Report – Physical dynamics and water quality
			PWMA19	Appendix D: Specialist Report – Modelling
			G10/00/2413/3	Appendix E: Specialist Report – Microalgae
				Appendix F: Specialist Report – Invertebrates
				Appendix G: Specialist Report – Fish
				Appendix H: Specialist Report – Birds
				Appendix I: Specialist Report – The economic value of the Berg River Estuary
				Appendix 1: Scheme Yield Assessments and Diversion Functions
				Appendix 2: Unit Reference Value Calculation Sheets
				Appendix 3: Yield Analysis and Dam Size Optimization
2				Appendix 4: Dam Design Inputs
	ASSESSMENT		PWMA19 G10/00/2413/4	Appendix 5: Diversion Weir Layout Drawings
	OF OPTIONS			Appendix 6: Voëlvlei Dam Water Quality Assessment
				Appendix 7: Botanical Considerations
				Appendix 8: Heritage Considerations
				Appendix 9: Agricultural Economic Considerations

STUDY REPORT LIST (cntd)

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE		
				Berg River-Voëlvlei Augmentation Scheme		
				Appendix 1: Updating of the Western Cape Water Supply System Analysis for the Berg River-Voëlvlei Augmentation Scheme		
		Vol 1	PWMA19	Appendix 2: Configuration, Calibration and Application of the CE- QUAL-W2 model to Voëlvlei Dam for the Berg River-Voëlvlei Augmentation Scheme		
		VOLT	G10/00/2413/5	Appendix 3: Monitoring Water Quality During Flood Events in the Middle Berg River (Winter 2011), for the Berg River-Voëlvlei Augmentation Scheme		
				Appendix 4: Dispersion Modelling in Voëlvlei Dam from Berg River Water Transfers for the Berg River-Voëlvlei Augmentation Scheme		
				Appendix 7 - 12: See list under Volume 2 below		
				Breede-Berg (Michell's Pass) Water Transfer Scheme		
3 F S	FEASIBILITY STUDIES	Vol 2	PWMA19 G10/00/2413/6	Appendix 5: Scheme Operation and Yield Analyses with Ecologica Flow Requirements for the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 6: Preliminary Design of Papenkuils Pump Station Upgrade and Pre-Feasibility Design of the Boontjies Dam, for the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 7: Ecological Water Requirements Assessment Summary for the Berg River-Voëlvlei Augmentation Scheme , and the Breede Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 8: Geotechnical Investigations for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 9: LiDAR Aerial Survey, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 10: Conveyance Infrastructure Design Report, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 11: Diversion Weirs Design for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme		
				Appendix 12: Cost Estimates for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme		
4	RECORD OF IMPLEMENTATION DECISIONS		PWMA19 G10/00/2413/7			

STUDY REPORT MATRIX DIAGRAM

ACKNOWLEDGEMENTS

PREPARED FOR THE WCWC JV BY:

CSIR PO Box 320 Stellenbosch 7599

AUTHORS:

L. van Niekerk, S. Taljaard, J.B. Adams, P. Huizinga, S.J. Lamberth, G.C. Snow, J.K. Turpie and T.H. Wooldridge

REVIEWER:

C.A. Brown

LEAD CONSULTANT: CSIR

EDITOR:

L van Niekerk

EXECUTIVE SUMMARY

The Palmiet Estuary is a small system located 75 km south east of Cape Town.

The estuary is in a good condition, although mean annual run-off has been reduced by 36.1% relative to natural.

The **Present Ecological Status** of the estuary is a **C**. Major drivers of change in the system were a significant reduction in river inflow (floods and baseflows), increased mouth closure; reduced sediment scouring and an increased nutrient load from the catchment. Of special concern were the occurrence of macrophytes blooms in the estuary as a result of increase nutrients, reduce baseflow and closed (or semi-closed) mouth conditions. Die-off of these macrophyte blooms causes hypoxic or anoxic conditions in the estuary, which in turn puts the rest of the ecosystem under stress. An additional concern was the long periods of artificial droughts the estuary were currently experiencing and the impact this would have on fish recruitment.

The overall **Estuarine Importance Score** for the Palmiet Estuary, based on its present state, is **58**, signifying that the estuary is of **average importance**.

The Palmiet Estuary abuts the Kogelberg Biosphere, and is included in a core set of estuaries that needs to be protected to meet biodiversity targets in South Africa.

The pressures currently contributing to the degraded health of the Palmiet Estuary are poor water quality and reduction in river inflow in summer, which can be easily mitigated. Thus, the **REC for the Palmiet Estuary is a Category B.**

Hydrological data were provided by Aurecon Consulting Engineers for the Reference Conditions, Present State and Scenarios 1 to 4. Scenario 5 and 6 were generated at the EWR workshop and represent minor changes to the Present State.

Scenario name	MAR (million m ³)	% Remaining	Description
Reference Condition	256.3	100	Natural (~ 100 to 150 years ago)
Present State	163.7	63.9	Current level of catchment development
Scenario 1	185.2	72.2	Minimum Degradation - Campanula Dam
Scenario 2	161.3	62.9	Different pump rates
Scenario 3	148.7	58.0	No EWR releases and Lower Steenbras raised
Scenario 4	111.18	43.4	Lower Steenbras raised, Campanula Dam and no EWR releases
Scenario 5	163.7	63.9	Similar to Present State, with a 66 % reduction in nutrient input from the catchment
*Scenario 6	161.3	62.9	Similar to Scenario 2, but elevate base flows, with flows $<1.0 \text{ m}^3\text{s}^{-1}$ occurring for 22 % of the time, i.e. flows not less than 1.0 m ³ s ⁻¹ for longer than 3 months in a year.

The recommended Ecological Water Requirement is defined as the runoff scenario (or a slight modification thereof) that represents the highest reduction in river inflow that will still protect the aquatic ecosystem of the estuary and keep it in the recommended EC.

In evaluating Scenarios 1 to 4, it was assumed that only river inflow from the Palmiet Catchment would be modified and that other related anthropogenic activities (e.g. fishing, bait collection and human disturbance) will remain at present levels.

Variable	Weight	Drecent	Future Runoff Scenario							
Variable		Fresent	1	2	3	4	5	6		
Score		67	69	66	66	59	68	76		
Category		С	С	С	С	D	С	В		

Scenario 6 was selected as the recommended Ecological Water Requirement for the Palmiet Estuary. A summary of flow distributions for the recommended ecological flow scenario (Scenario 6) is provided below.

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	20.44	8.79	3.58	2.81	2.35	2.44	6.71	12.85	25.23	43.50	36.36	27.49
90%ile	10.43	3.90	1.43	0.82	0.83	1.05	3.53	7.91	19.45	22.70	26.15	17.93
80%ile	6.61	2.52	1.00	0.57	0.68	0.81	2.06	5.38	12.39	17.16	19.62	13.37
70%ile	5.89	1.98	1.00	0.52	0.54	0.56	1.50	4.34	9.39	13.35	16.73	11.27
60%ile	4.52	1.66	1.00	0.52	0.52	0.51	1.19	3.78	8.25	11.40	15.80	9.75
50%ile	3.66	1.47	1.00	0.52	0.49	0.44	1.00	3.12	7.03	9.91	13.54	7.91
40%ile	3.17	1.36	1.00	0.45	0.34	0.33	1.00	2.56	5.46	8.88	11.20	6.58
30%ile	2.81	1.20	1.00	0.35	0.32	0.30	1.00	2.13	4.14	6.64	9.94	6.05
20%ile	2.40	1.00	1.00	0.32	0.29	0.27	1.00	1.60	3.57	5.43	8.43	5.67
10%ile	1.76	1.00	1.00	0.28	0.26	0.25	1.00	1.30	2.56	4.63	7.01	5.05
1%ile	1.22	1.00	1.00	0.10	0.08	0.12	1.00	1.00	1.27	3.00	5.02	3.95

Note that an increase in river inflow in itself (i.e. Scenario 6) would not be sufficient to ensure the recommended level of estuarine functioning. The following restoration measures are required to improve the present health of the Palmiet Estuary:

- Manage anthropogenic nutrient and organic matter inputs to the estuary through improved agricultural and urban landscape management;
- Improve the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present recreational angling (and the occasional gillnetting) accounts for approximately 0.2 tonne annually. This includes the requirement for improved control of the harvesting of eels from the catchment.
- Restrict bait collection when the mouth is closed, since recruitment cannot occur during extended periods of mouth closure as it leads to the depletion of important food resources in the estuary.
- Install a fish ladder at the gauging weir and an eelway at the dams to facilitate migration of fishes into the lower river reaches.

Any assessment of future water-resource developments should also include an evaluation of the success of the implementation of these non-flow related mitigation measures in restoring the habitat and protecting biota.

The setting and achievement of national management objectives for the Palmiet Estuary will require a high level of co-operative governance between the various management authorities.

Lastly, it is recommended that a Palmiet Estuarine Management Plan be developed.

TABLE OF CONTENTS

EXECUTIVE SUMMARYI							
TABLE OF CONTENTS III							
LIST OF TABLESV							
LIST OF FIGURESVI							
1	INTRODUCTION	1					
1.1 <i>1.1.1</i> 1.2	BACKGROUND Ecological Water Requirements and the Ecological Reserve OBJECTIVES OF THE REPORT	1 <i>1</i> 1					
1.3 1.4 1.5 1.6	ESTUARINE SPECIALIST TEAM OVERVIEW OF THE PROCESS FOR DETERMINATION OF THE ECOLOGICA RESERVE FOR ESTUARIES ASSUMPTIONS AND LIMITATIONS OF THE STUDY REPORT OUTLAY	1 1 2 2 4					
2	DEFINITION OF RESOURCE UNIT	5					
2.1 2.2	INTRODUCTION GEOGRAPHICAL BOUNDARY	5 5					
3	ECOLOGICAL RESERVE CATEGORISATION	6					
3.1 3.2 3.2.1 3.2.2 3.2.3 3.3	TYPICAL ABIOTIC STATES DESCRIPTION OF THE PRESENT STATE Abiotic Components Biotic Components Distribution and abundance REFERENCE CONDITION	6 10 15 24 27					
3.3.1 3.3.2	Abiotic Components	27 30					
3.4 3.4.1 3.4.2 3.4.3	Abiotic Components	33 33 37 41					
4	RECOMMENDED ECOLOGICAL CATEGORY FOR THE PALMIET ESTUAR	Y					
5	QUANTIFICATION OF ECOLOGICAL RESERVE SCENARIOS 4	6					
5.1 5.2 <i>5.2.1</i>	DESCRIPTION OF THE SCENARIOS	16 16 46					
5.2.2 5.2.3 5.2.4	Flood regime	19 52 52					
5.2.5 5.2.6 5.2.7 5.2.8	Occurrence and duration of different Abiotic states	53 51 52 53					

5.2.9	Physical habitat alteration	66
5.3	BIOTIC COMPONENTS	67
5.3.1	Microalgae	67
5.3.2	Macrophytes	71
5.3.3	Invertebrates	73
5.3.4	Fish	80
5.3.5	Birds	
6	RECOMMENDED ECOLOGICAL FLOW REQUIREMENT FOR THE F	ALMIET
	ESTUARY	86
7	COOPERATIVE GOVERNANCE	88
8	ECOLOGICAL SPECIFICATIONS	89
9	MONITORING REQUIREMENTS	95
9.1	HYDRO- AND SEDIMENT DYNAMICS	
911	Sampling Procedure	96
912	Baseline data	97
913	l ona-term monitorina	
9.2	WATER OLIALITY	97
921	Sampling Procedure	
922	Baseline data	98
923	l ona-term monitorina	00 08
93		
931	Sampling Procedure	
932	Baseline data	
933	l ona-term monitorina	100
9.0.0	MACDODUVTES	100
0/1	Sampling Procedure	100
9.4.1	Baseline data	
0/3	l ong-term monitoring	102
9.4.5		102
9.5	Sompling Procedure	102
9.5.1	Basolino data	104
9.5.2	Long torm monitoring	104
9.0.0	Elen	105
9.0	Sampling Procedure	
9.0.1	Baseline data	106
9.0.2	Long-torm monitoring	106
9.0.3 0.7	Bippe	107
9.1 0.7.1	Sampling Procedure	108
072	Baseline data	108
973	l ona-term monitorina	108
10	LONG-TERM MONITORING DECISION SUPPORT SYSTEM (DSS)	109
44		100
APPENDI	(A: SUMMARY OF DATA AVAILABLE FOR THE RDM INVESTIG	
		112
APPENDI	(B: SUMMARY OF BASELINE DATA REQUIREMENTS AND THE	LONG-
	TERM MONITORING PROGRAMME	115

LIST OF TABLES

Table 1.1	Lead specialists responsible for the various components of the Estuarine EWR 2
Table 1.2	Confidence limits for an estuarine EWR study
Table 3.1	Summary of the abiotic states that can occur in the Palmiet Estuary
Table 3.2	Summary of typical physical and water quality characteristics of different abiotic
	states in the Palmiet Estuary
Table 3.3	A summary of the monthly flow (m ³ s ⁻¹) distribution under the Present State 10
Table 3.4	Simulated monthly flows to the Palmiet Estuary for the Present State (m ³ s ⁻¹) 10
Table 3.5	Highest monthly flows (in m ³ s ⁻¹) in the Palmiet River simulated data for October
	1928 to September 2005 for the Reference Condition and Present State 12
Table 3.6	Palmiet highest daily flows (in m ³ s ⁻¹) simulated data for October 1928 to
	September 1963 for the Reference Condition and Present State
Table 3.7	The effect of abiotic drivers (and other biotic components) on the biota of the
	Palmiet Estuary
Table 3.8	Summary of the living resources utilisation in the Palmiet Estuary
Table 3.9	A summary of the monthly flows (m ³ s ⁻¹) distribution under the Reference
	Condition
Table 3.10	Simulated monthly flows to the Palmiet Estuary for the Reference Condition
	(m ³ s ⁻¹)
Table 3.11	Estuarine Health Index (EHI) scores
Table 3.12	Guidelines for the Present Ecological Status
Table 4.1	Biodiversity Importance Scores
Table 4.2	Functional Importance Scores
Table 4.3	Estuarine Importance Scores
Table 4.4	Estuarine Importance description
Table 4.5	Ecological Reserve Category
Table 4.6	Guidelines for the Recommended Ecological Reserve Category
Table 5.1	Runoff scenarios evaluated as part of the Rapid Palmiet Estuary Flow
	requirement study 46
Table 5.2	A summary of the monthly flow (m ³ s ⁻¹) distribution under Scenario 1 to 6 48
Table 5.3	Palmiet highest monthly flows (m ³ s ⁻¹) simulated data for October 1928 to
	September 2005
Table 5.4	Palmiet highest daily flows (m ³ s ⁻¹) simulated data for October 1963 to
	September 2005 50
Table 5.5	Simulated monthly flows to the Palmiet Estuary for Scenario 1 (m ³ s ⁻¹)
Table 5.6	Simulated monthly flows to the Palmiet Estuary for Scenario 2 (m ³ s ⁻¹)
Table 5.7	Simulated monthly flows to the Palmiet Estuary for Scenario 3 (m ³ s ⁻¹)
Table 5.8	Simulated monthly flows to the Palmiet Estuary for Scenario 4 (m ³ s ⁻¹)
Table 5.9	Simulated monthly flows to the Palmiet Estuary for Scenario 6 (m ³ s ⁻¹)
Table 6.1	Summary of individual EHI Scores and resultant category for Scenarios 1 to 686
Table 6.2	Summary of flow distributions (in m ³ s ⁻¹) of the recommended Ecological Flow
	Scenario (Scenario 6) for the Palmiet Estuary
Table 8.1	Palmiet: Ecological Specifications for the Recommend Ecological Category B.90
Table 9.1	Palmiet Habitat types and indicator species 102

LIST OF FIGURES

Figure 1.1	Procedures for a rapid EWR determination for estuaries, in context of the broader RDM process (components not addressed as part of the ecological reserve determination process are indicated by hatched line boxes) (DWAF
Figure 1.2	Indication of human resource requirements for a rapid EWR determination for estuaries (DWAF 2004)
Figure 2.1	Google image showing the boundaries of the Palmiet Estuary
Figure 3.1	Schematic representation of the key circulation features of the five abiotic states of the Palmiet Estuary (after Van Ballegooyen et al. 2004)
Figure 3.2	Graphic representations of the occurrence of the abiotic states under the Present State
Figure 3.3	Occurrence of 'drought' conditions in the Palmiet Estuary under the Present State
Figure 3.4	Graphic representations of the occurrence of the abiotic states under the Reference Condition
Figure 3.5	Drought conditions in the Palmiet Estuary under the Reference Condition 30
Figure 5.1	Exceedance curve for the different scenarios indicating the decrease in daily flows under the various scenarios
Figure 5.2	Exceedance curve on a logarithmic scale for the different scenarios indicating the decrease in daily flows under the various scenarios
Figure 5.3	Graphic summary of the occurrence of the various abiotic states under Scenarios 1 to 6
Figure 5.4	Graphic illustrations of the reduction in median (50 %ile) and drought (10 %ile) flows. The 75 %ile and 25 %ile values are indicative of the variability in flow for individual months EHI Scoring of abiotic components
Figure 5.5	Graphic illustrations of the number of times the annual inflow to the Palmiet Estuary falls below the Reference Condition drought conditions under Scenarios 1 to 6
Figure 9.1	Map of the Palmiet Estuary indicating the recommended location of the transect to be used for the vegetation survey.
Figure 10.1	Proposed Monitoring Decision Support System (MDSS) to be applied in the
	long-term monitoring of estuaries

GLOSSARY AND ABBREVIATIONS							
ССТ							
CD	Chief Directorate						
CSIR	Centre of Scientific and Industrial Research						
DAFF	Department of Agriculture, Forestry and						
	Fisheries						
DEA	Department of Environmental Affairs						
DIN	Dissolved Inorganic Nitrogen						
DRP	Dissolved Reactive Phosphate						
DRS	Dissolved Reactive Silicate						
DWA	Department of Water Affairs						
EHI	Estuarine Health Index						
ERC	Ecological Reserve Category						
MAR	Mean Annual Runoff						
MCM	Million Cubic Metres						
MCM/a	Million Cubic Metres per annum						
MSL	Mean Sea Level						
NMMU	Nelson Mandela Metropolitan University						
PES	Present Ecological Status						
ppt	part per thousand						
PSP	Professional Service Provider						
RDM	Resource Directed Measures						
REI	River Estuary Interface						
RQO	Resource Quality Objectives						

1 INTRODUCTION

1.1 BACKGROUND

The Western Cape Water Supply System (WCWSS) serves the City of Cape Town (CCT), other urban users and irrigators. It comprises infrastructure owned and operated by both the CCT and the Department of Water Affairs (DWA).

The Western Cape Reconciliation Strategy Study reviewed the future water requirement scenarios of greater Cape Town and the reconciliation options for meeting these water requirements within a planning horizon to 2030. It identified potential suites of options for meeting future water demand from the WCWSS. It also identified various alternative implementation options, which offered flexibility in planning, such that possible changes in the projected water requirements could be accommodated. One set of implementation options is to further develop the surface water resources of the Berg and Breede Water Management Areas (WMAs).

In July 2008, the then Department of Water Affairs and Forestry (now DWA) appointed the Western Cape Water Consultants Joint Venture to undertake Pre-feasibility and Feasibility level investigations of the potential development of six surface water options, namely:

- the Michell's Pass Diversion Scheme;
- the First Phase Augmentation of Voëlvlei Dam;
- Further Phases of Voëlvlei Dam Augmentation;
- the Molenaars River Diversion;
- the Upper Wit River River Diversion;
- further Phases of the Palmiet Transfer Scheme.

This entailed investigations in three major catchments, viz. Breede, Palmiet and Berg Catchments.

Southern Waters sub-consulted CSIR, on behalf of the JV, to undertake a rapid Ecological Water Requirement (EWR) determination for the Palmiet River Estuary.

1.1.1 Ecological Water Requirements and the Ecological Reserve

The South African National Water Act (NWA) provides for the protection of water resources through the apportioning of an agreed amount of the water available in a system to facilitate maintenance of the natural environment in some pre-agreed condition. This water needs to be of an appropriate volume and quality, and be available at the appropriate time of the year, to fulfil its purpose, and is known as the Ecological Reserve.

To arrive at the Ecological Reserve, the Ecological Water Requirements (EWRs) for the maintenance of affected rivers, estuaries, wetlands and groundwater are first determined for a range of future conditions. These are then assessed against other requirements in the basin, such as provision of water for off-stream use, as part of a consultative process to decide on acceptable future conditions for the various ecosystems (Dollar et al. 2008). The agreed future condition and the EWRs for maintaining such become the Ecological Reserve.

1.2 OBJECTIVES OF THE REPORT

This report provides the background data and deliberations for the preliminary Ecological Water Requirement (EWR) study on the Palmiet Estuary. The study was done at a **RAPID** level.

1.3 ESTUARINE SPECIALIST TEAM

The specialist team responsible for this study is given in Table 1.1.

Role/Expertise	Lead specialists	Contact details
Workshop coordination, Report preparation and hydrodynamics	Ms Lara van Niekerk	CSIR, Stellenbosch, <u>Ivnieker@csir.co.za</u>
Hydrology	Mr Anton Sparks	Aurecon Consulting Engineers
Water quality	Ms Susan Taljaard	CSIR, Stellenbosch, staljaar@csir.co.za
Hydrodynamics and sediment dynamics	Mr Piet Huizinga	Independent consultant, p.huizinga@adept.co.za
Microalgae and vegetation	Prof Janine Adams/ Dr Gavin Snow	Nelson Mandela Metropolitan University, janine.adams@nmmu.ac.za' gavinsnow@nmmu.ac.za
Invertebrates	Prof Tris Wooldridge	Nelson Mandela Metropolitan University, tris.wooldridge@nmmu.ac.za
Fish	Dr Stephen Lamberth	Independent consultant, s.j.lamberth@gmail.com
Birds	Dr Jane Turpie	Anchor Environmental Consultants jane.turpie@uct.ac.za

Table 1.1 Lead specialists responsible for the various components of the Estuarine EWR

1.4 OVERVIEW OF THE PROCESS FOR DETERMINATION OF THE ECOLOGICAL RESERVE FOR ESTUARIES

The preliminary determination of the EWRs for estuaries can be conducted on different levels, namely:

- Comprehensive;
- Intermediate; and
- Rapid.

The procedures are discussed in detail in *Resource directed measures for protection of water resources: Methodology for the Determination of the Ecological Water Requirements for Estuaries, Version 2* (DWAF 2004). The procedure for the Rapid level determination for estuaries is summarised in the Figure 1.1.

A summary of the human resource requirements to conduct a Rapid level determination is illustrated in Figure 1.2.

•

1.5 ASSUMPTIONS AND LIMITATIONS OF THE STUDY

The following assumptions and limitations should be taken into account:

- No new data were collected as part of this study. All assumptions made as part of this assessment are based on historical data and expert opinion.
- The overall confidence in the hydrological data provided to the estuarine team by Aurecon Consulting Engineers was high.
- The accuracy of the predicted abiotic states for the Palmiet Estuary and the distribution of these states under the reference condition, present state and future flow scenarios depend largely on the accuracy of the simulated runoff data and measured flow data.

Figure 1.1 Procedures for a rapid EWR determination for estuaries, in context of the broader RDM process (components not addressed as part of the ecological reserve determination process are indicated by hatched line boxes) (DWAF 2004)

Figure 1.2 Indication of human resource requirements for a rapid EWR determination for estuaries (DWAF 2004)

Criteria for the confidence limits attached to statements in this study are (Table 1.2):

Limit	Degree of confidence	Percentage
Low	If no data were available for the estuary or similar estuaries	< 40%
Medium	If limited data were available for the estuary or other similar estuaries	40% - 80%
High	If sufficient data were available for the estuary	> 80%

Table 1.2 Confidence limits for an estuarine EWR study

1.6 REPORT OUTLAY

The Palmiet Estuary EWRs report is divided into following chapters:

- **Chapter 2: Definition of Resource Unit.** This chapter provides a brief description of the Palmiet Estuary and the area covered by the study.
- Chapter 3: Ecological Reserve Categorisation. Chapter three discusses the dominant abiotic states associated with the estuary and links these states to the various flow rates experienced within the estuary. The chapter further describes the present state of the system in comparison to the reference condition. This chapter concludes with scoring the Present Ecological Status (PES) of the estuary using the Estuarine Health Index. This score gives a measure of how healthy the estuary is in its present state.
- Chapter 4: Recommended Ecological Category for Palmiet Estuary. Chapter 4 uses a range of measures to establish how important the Palmiet Estuary is from a biological and conservation point of view. The final score determines the Recommended Ecological Category of the estuary. It should be noted that this Recommended Ecological Category (REC) is a biological recommendation only and does NOT take into consideration the socio-economic factors associated with integrated water management and therefore the final reserve.
- Chapter 5: Quantification of Ecological Reserve Scenarios. In this chapter a range of flow scenarios are examined to establish the impact that they will have on the Estuarine Health Indices (EHI) score. As outlined in the 2004 RDM estuary methods it is imperative that a full range of water resources development scenarios are reviewed to ensure that the correct sensitivity in analysis is achieved. Where possible operational scenarios are used, i.e., scenarios that are plausible and which have been motivated by water resource planners. However in order to achieve a full spread of scenarios some hypothetical options are also included (normally associated with extreme abstraction scenarios) to secure the required spread.
- Chapter 6: Recommended Ecological Flow Requirements for the Palmiet Estuary. This chapter discusses all of the scenarios and recommends the Ecological Flow Requirement for the system as well as outlining key non-flow related activities which impact on the health of the estuary.
- **Chapter 7: Cooperative Governance.** Chapter 7 highlights the importance of Co-operative governance in achieving the REC. It also briefly touch on the various roles and responsibilities of the authorities mandated with estuarine resource management with regards to the Palmiet.
- **Chapter 8: Ecological Specifications.** In this chapter Ecological Specifications and Thresholds of potential concern (TPC) are defined for the various abiotic and biotic components to prompts management action if required.
- **Chapter 9: Monitoring Requirements.** This chapter highlights the baseline data requirements to increase the overall confidence of the study and the long-term monitoring needs to identify change and trends in ecosystem processes and function of the Palmiet Estuary.
- Chapter 10: Long-term Monitoring Decision Support System (DSS). Chapter 10 provides a brief summary of the proposed monitoring decision support system for the Palmiet Estuary

2 DEFINITION OF RESOURCE UNIT

2.1 INTRODUCTION

The Palmiet Estuary, located 75 km south east of Cape Town, is a small system 1.67-km long and c. 300 m at its widest point (Figure 2.1). The head of the estuary is marked by a series of rocky sills. The channel meanders between steep rocky banks in the upper reaches of the estuary, and scour holes (4-5 m) are located on the outer bends of these meanders. From c. 700 m upstream of the mouth, the channel hugs the west bank and there are broad, shallow tidal flats on the eastern side (CSIR 1992).

The mouth is located close to a rocky bank on the western side. Prevailing westward longshore currents and the SSW and WSW high-energy waves result in an extensive mobile sand spit on th eastern side of the mouth.

The estuary is in a good condition. However, based on the simulated run-off data provided for this project, it is estimated that the mean annual run-off has been reduced by 36.1%, from 256.3 x 10^6 m³a⁻¹ under natural conditions to 163.7 x 10^6 m³a⁻¹ in 2009. The runoff from the catchment shows strong seasonal variations with high flows and major floods during the winter months, and low flows during the summer months.

Figure 2.1 Google image showing the boundaries of the Palmiet Estuary

2.2 GEOGRAPHICAL BOUNDARY

For the purposes of this rapid level EWR determination for the Palmiet Estuary, the geographical boundaries were defined as follows (Figure 2.1):

Downstream Doundary.	Estuary mouth (34 20 43.33 3 16 39 40.29 E)
Upstream boundary:	1.67 km from the mouth (34°19'53.67"S 18°59'28.42" E) to the extent of
	tidal influence
Lateral boundaries:	5-m contour above Mean Sea Level (MSL) along each bank

3 ECOLOGICAL RESERVE CATEGORISATION

3.1 TYPICAL ABIOTIC STATES

Based on available literature, a number of characteristic 'states', related to tidal exchange, salinity distribution and water quality, were identified for the Palmiet Estuary. These are primarily determined by river inflow patterns, state of the tide and wave conditions. The different states are listed in Table 3.1.

Table 3.1 Summary of the abiotic states that can occur in the Palmiet Estuary

State	Name	Flow range (m ³ s ⁻¹)
1	Closed mouth: No exchange through the mouth (usually during the dry season)	< 0.15
2	Semi-open mouth: No seawater intrusion, but with water flowing out to sea (usually during the dry season)	0.15 -1.0
3	Highly stratified, with significant marine influence: Open mouth with extensive seawater intrusion (usually during the dry season);	1.0 – 10.0
4	Highly stratified, with significant freshwater influence: Open mouth with limited seawater intrusion and strong river influence (usually during the wet season)	10.0 – 20.0
5	Freshwater dominated: Open mouth with no seawater intrusion and very strong river influence (i.e. river or fluvially dominated) (usually during the wet season)	> 20.0

The transitions between the different states are gradual.

To assess the occurrence and duration of the different abiotic states selected for the estuary during the different scenarios, a number of techniques were used, including:

- Colour coding for the full tables of simulated monthly river flow reaching the estuary for each scenario to highlight the occurrences of the different abiotic states related to the different flow ranges.
- Separate summary tables of the occurrences of different flows at increments of the 10%ile to provide a quick comprehensive overview.
- the median (50%ile) and drought flows (10%ile) monthly flows used to provide a conceptual overview of the annual distribution of abiotic states under the different scenarios.

The abiotic characteristics for the different states are summarised in Table 3.2. For a more detailed discussion refer to the Abiotic Specialist Report (Appendix B).

The five characteristic abiotic states identified for the Palmiet Estuary, related to tidal exchange, salinity distribution and water quality.

A schematic representation of the circulation features of each of the states is provided in Figure 3.1.

PARAMETER	STATE 1	STATE 2	STATE 3	STATE 4	STATE 5
River flow (m ³ s ⁻¹)	< 0.05	Usually when flows < 1 (refer to Table 3.5)	1 - 10	10 - 20	> 20
Mouth condition	Closed	Semi-closed	Open (with extensive sea water intrusion)	Open (with limited seawater intrusion on the flood tide and strong river influence)	Open (with no seawater intrusion and very strong river influence)
Water level variation	None	None	0.3 m (could drop up to 0,5 m lower during low tide after freshet)	0.3 m (could drop up to 0,5 m lower during low tide after freshet)	Backing up effect
Inundation	Limited inundated	Intertidal area inundated	None	None	Intertidal and Floodplain inundated during peak flows
Circulation	Wind mixing	Entrainment	Tidal	Freshwater flushing and Tidal	Freshwater flushing
Salinity (ppt)*	After storm 15 15 30 30 or 5 5 5 10 After state 2	< 1 month 15 15 20 25 or 5 5 5 15 > 1 month	20 15 35 30	0 0 25 10	0 0 0 0
Temperature (°C)	8 – 26 (usually summer)	18 – 26 (usually summer)	12 – 26 (usually summer, lower range saline waters during occasional upwelling)	12 -17 (usually winter)	13 – 15 (usually winter)
рН	7 - 8	7 – 8	7 - 8	<6 – 8	< 6
DO (mg.ſ¹)	>6 >6 2-6 <2	Reference >6 >6 2-6 <2	>6 >6 >6 >6	>6 >6 >6 >6	>6 >6 >6 >6
Transparency** (Sechhi depth in m)	1-2 1-2 1-2 1-2	1-2 1-2 1-2 1-2	>2 1-2 >2 >2	1-2 1-2 1-2 1-2	1-2 1-2 1-2 1-2

 Table 3.2
 Summary of typical physical and water quality characteristics of different abiotic states in the Palmiet Estuary

PARAMETER	STATE 1	STATE 2	STATE 3	STATE 4	STATE 5
DIN (μg.Γ¹)	Reference <50 <50 <50 <50 or <50 <50 50-300 <50 <50 Present	Reference<50<50<50<50or50-30050-300<50<50Present (higher levels linked to river input)	Reference (higher levels linked to upwelling) 50-300 <50 50-300 50-300 or 50-300 □0-300 50-300 50-300 Present ((higher levels linked to upwelling and river input)	Reference <50 <50 <50 <50 or <300 >300 <50 >300 Present (high levels linked to river input)	Reference <50 <50 <50 <50 or 300 >300 >300 >300 resent (high levels linked to river input)
DIP (µg.ſ¹)	<mark><10 <10</mark> <10 <10	<10 <10 <10 <10	10-50 <10 10-50 10-50 (higher levels linked to upwelling)	Reference <50 <50 <50 <50 or 10-50 <10 10-50 Present (high levels linked to river input)	Reference <50 <50 or 10-50 10-50 10-50 Present (high levels linked to river input)
DRS (µg.ſ¹)	500-1000 500-1000 <500 <500	500-1000 500-1000 <500 <500	500-1000 500-1000 <500 <500	>1000 >1000 <500 >1000 (high levels linked to river input)	>1000 >1000 >1000 >1000 (high levels linked to river input)

For the purposes of summarising typical salinity distributions, the system was sub-divided into 4 sections representing the lower (0-800 m) and upper (800 – 1 800 m) estuary (moving upstream from the mouth left to right) and into surface (water depth < 1.5 m) and bottom (water depth > 1.5 m) waters (top, left also represents the intertidal area – sand flats)

*

Figure 3.1 Schematic representation of the key circulation features of the five abiotic states of the Palmiet Estuary (after Van Ballegooyen et al. 2004)

3.2 DESCRIPTION OF THE PRESENT STATE

3.2.1 Abiotic Components

3.2.1.1 Seasonal variability in river inflow

The mean annual runoff (MAR) into the Palmiet Estuary is, according to the hydrological data provided for this study 163.7 million m^3 . This is a reduction of 36.1% compared with the natural MAR of 256.3 million m^3 .

The occurrences of flow distributions (mean monthly flows in m³s⁻¹) for the present state of the Palmiet Estuary, derived from a 77-year simulated data set are provided in Table 3.3. The full 77-year series of simulated monthly runoff data for the present state is provided in Table 3.4. A graphic representation of the occurrence of the various abiotic states is presented in Figure 3.2.

Table 3.3 A summary of the monthly flow (m³s⁻¹) distribution under the Present State

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	20.44	8.79	3.58	2.81	2.35	2.44	6.71	12.85	25.58	43.56	36.36	27.49
90%ile	11.40	3.90	1.43	0.82	0.83	1.05	3.53	7.91	19.69	23.38	26.15	18.69
80%ile	6.84	2.52	0.86	0.57	0.68	0.81	2.06	5.38	12.63	17.56	20.33	13.41
70%ile	5.89	1.98	0.74	0.52	0.54	0.57	1.50	4.34	9.39	13.56	16.77	12.18
60%ile	4.52	1.66	0.67	0.52	0.52	0.52	1.19	3.78	8.25	11.61	16.08	9.89
50%ile	3.66	1.47	0.60	0.52	0.50	0.44	0.97	3.12	7.03	9.91	13.54	8.30
40%ile	3.17	1.36	0.56	0.46	0.34	0.33	0.74	2.56	5.46	8.88	11.20	6.70
30%ile	2.81	1.20	0.54	0.35	0.32	0.30	0.57	2.13	4.14	6.74	9.94	6.10
20%ile	2.40	1.00	0.52	0.32	0.29	0.27	0.48	1.61	3.57	5.43	8.64	5.67
10%ile	1.82	0.89	0.44	0.28	0.26	0.25	0.33	1.33	2.56	4.63	7.23	5.05
1%ile	1.22	0.61	0.33	0.10	0.08	0.12	0.25	0.70	1.32	3.00	5.02	3.95

Table 3.4 Simulated monthly flows to the Palmiet Estuary for the Present State (m³s⁻¹)

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1928	2.41	0.96	0.70	0.52	0.52	0.26	1.52	2.72	3.39	10.94	12.33	6.11
1929	1.24	0.73	0.52	0.39	0.47	0.50	0.48	0.53	1.36	2.73	5.79	13.43
1930	6.50	1.81	0.78	0.31	0.34	0.28	2.67	3.36	2.00	5.84	15.72	13.32
1931	11.21	2.07	0.70	0.46	0.86	0.55	0.33	3.18	7.72	9.88	8.39	13.22
1932	5.90	1.07	0.51	0.33	0.31	0.29	0.32	1.43	10.09	12.23	18.19	6.36
1933	2.84	0.97	0.39	0.26	0.33	0.32	0.30	1.57	2.13	4.44	10.70	8.98
1934	8.51	1.99	0.52	0.27	0.27	0.48	1.32	4.35	5.92	6.76	5.60	6.03
1935	2.42	1.64	0.74	0.99	0.74	0.58	0.53	2.91	3.65	5.44	10.54	6.76
1936	2.89	1.85	1.38	0.71	0.34	0.38	0.97	2.82	16.62	24.00	15.07	5.66
1937	2.79	1.07	0.54	0.52	0.52	0.37	1.68	4.10	2.87	4.18	7.88	12.28
1938	4.95	1.37	0.57	0.31	0.80	0.65	1.15	3.28	2.09	5.23	12.15	6.03
1939	1.62	1.23	0.65	0.34	1.15	0.84	2.94	4.28	9.00	7.08	5.82	8.32
1940	2.39	2.52	0.87	0.61	0.51	0.30	4.27	11.09	23.39	20.49	16.95	30.52
1941	12.44	2.33	0.80	0.57	0.52	0.52	0.57	3.95	19.96	9.74	13.54	6.28
1942	1.54	0.64	0.54	2.38	1.61	0.62	1.45	1.95	4.53	8.92	16.38	8.08
1943	3.98	1.45	0.58	0.33	0.32	0.28	0.49	4.21	21.41	22.70	25.72	22.43
1944	6.63	1.63	0.85	0.52	0.32	0.24	0.70	10.37	24.19	42.41	29.31	5.97
1945	6.17	1.98	0.60	0.52	0.30	0.97	1.37	1.66	2.87	4.66	8.32	12.08
1946	2.99	0.90	0.37	0.26	0.26	0.92	0.96	1.98	3.81	18.08	9.14	5.42
1947	1.86	1.01	0.44	0.28	0.30	0.48	0.64	1.36	4.03	9.01	7.35	7.46
1948	10.57	2.53	0.54	0.52	0.52	0.25	1.40	2.43	3.93	5.62	10.08	7.13
1949	2.79	1.64	0.73	0.33	0.28	0.24	2.37	2.31	1.73	13.83	6.94	7.09
1950	5.83	7.89	2.38	0.73	0.52	0.52	3.76	4.34	19.41	22.99	15.76	26.53
1951	7.11	2.76	0.79	0.52	0.50	0.43	0.53	2.16	2.34	6.61	16.59	11.81
1952	6.87	1.82	0.83	0.35	0.29	0.27	3.38	7.87	5.80	12.46	15.16	4.00
1953	1.99	1.98	0.65	0.52	0.31	0.33	1.07	10.81	17.46	37.69	36.06	13.79
1954	3.24	1.67	0.58	0.37	4.20	2.28	1.39	1.32	3.03	17.12	30.18	15.51
1955	10.40	2.99	0.87	0.52	0.54	0.41	0.56	4.84	9.39	11.09	12.21	5.94
1956	3.24	1.24	0.54	0.52	0.69	0.80	1.19	7.96	20.46	30.08	26.88	12.88
1957	19.73	3.77	0.56	0.52	0.80	1.12	0.86	5.51	7.44	3.19	9.48	9.82
1958	3.47	1.31	0.48	0.34	0.33	0.36	5.23	18.42	9.67	4.78	20.46	8.81
1959	4.03	1.44	0.54	0.52	0.29	0.34	0.48	2.79	8.95	5.32	5.07	3.79
1960	1.89	0.73	0.61	1.28	0.81	0.30	0.33	1.09	4.06	5.25	13.11	11.06
1961	3.66	1.07	0.39	0.28	0.36	0.51	1.49	1.28	17.04	14.67	26.29	12.28
1962	16.13	4.17	0.70	0.54	0.52	0.52	0.54	1.36	3.91	13.24	25.08	7.22

Feasibility Study into the Potential Development of Further Surface Water Supply Schemes for the Western Cape – Palmiet Estuary

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1963	1.96	1.27	0.70	0.52	0.56	0.57	0.73	1.60	7.03	8.57	21.51	9.72
1964	4.55	4.10	0.97	0.52	0.57	1.15	1.67	3.83	4.70	6.40	9.60	4.18
1965	3.20	1.30	0.92	0.53	0.34	0.93	1.01	2.32	3.00	11.28	17.50	12.01
1966	2.18	0.79	0.52	0.52	0.27	0.33	4.78	4.08	9.41	9.06	8.94	5.40
1967	5.61	1.49	0.57	0.49	0.55	0.33	0.78	5.39	9.38	11.64	17.04	5.03
1968	6.63	1.70	0.55	0.57	0.58	0.74	1.19	1.34	4.29	5.43	7.69	6.37
1969	5.88	1.86	0.51	0.28	0.35	0.30	0.27	1.88	7.15	9.89	19.79	8.78
1970	3.77	1.40	0.94	0.54	0.33	0.29	0.31	1.05	2.70	8.86	13.23	6.42
1971	2.13	0.96	0.44	0.36	0.55	0.48	2.01	4.79	5.24	4.58	8.95	6.32
1972	1.75	0.65	0.47	0.34	0.29	0.25	0.32	0.78	1.18	8.22	9.18	6.81
1973	2.81	0.89	0.44	0.32	0.29	0.27	0.26	2.93	4.22	3.93	37.30	21.87
1974	12.01	2.61	0.58	0.52	0.52	0.27	0.68	4.25	6.41	13.81	22.78	5.72
1975	3.55	1.38	0.54	0.52	0.32	0.39	0.75	1.87	11.60	14.62	11.75	10.44
1976	4.46	8.99	3.80	0.86	0.66	0.82	2.37	10.20	29.35	33.90	31.90	14.78
1977	3.23	1.00	0.68	0.35	0.35	0.45	0.72	0.97	1.52	4.17	10.81	9.65
1978	5.37	1.40	0.55	0.44	1.77	1.00	0.33	5.16	7.94	7.60	7.65	6.65
1979	11.68	2.64	0.54	0.35	0.49	0.32	1.01	3.56	8.33	5.01	4.85	5.06
1980	2.94	6.52	3.51	4.17	1.73	0.81	3.17	1.85	2.78	14.30	22.50	22.99
1981	3.84	1.23	0.65	0.52	0.52	0.27	1.70	1.59	4.16	4.67	7.06	5.17
1982	2.27	0.95	0.88	0.57	1.49	1.30	0.62	6.27	19.51	24.30	15.01	18.37
1983	3.67	0.89	0.52	0.52	0.30	0.44	0.84	10.40	8.17	9.91	5.88	16.61
1984	12.69	2.45	2.79	1.19	1.57	2.94	4.35	2.42	5.79	17.67	21.00	8.30
1985	4.48	1.62	0.54	0.52	0.57	1.26	1.90	2.29	6./1	12.25	32.25	16.27
1986	2.65	1.23	0.58	0.52	0.54	0.52	1.38	5.34	/.89	10.58	16.59	13.04
1987	3.15	1.53	0.95	0.30	0.09	0.29	1.13	2.53	6.72	10.37	/.80	10.88
1988	2.00	1.41	0.22	0.08	0.18	1.98	4.01	4.89	9.39	11.49	19.70	22.90
1989	0./5	2.81	0.81	0.52	0.72	0.88	3.17	/.0/	10.79	23.95	16.07	0.00
1990	1.23	1.02	0.52	0.10	0.18	0.03	0.33	3.30	9.85	19.78	10.29	10.37
1991	0.41 17.14	2.50	0.08	0.52	0.37	0.33	2.07	1.12	24.39	21.29	14.83	12.88
1992	1/.14	3.42	0.00	0.52	0.74	0.28	11.40	/.08	12.89	47.18	10.40	0.20
1993	1.22	0.53	0.83	0.10	0.00	0.19	0.33	1.37	20.07	13.50	10.03	4.57
1774	2.03	0.73	2.20	0.22	0.17	0.14	0.40	2.72	0.07	12.03	10.55	10.14
1775	2.17	2.37	3.27	0.90	0.54	0.52	0.52	2.23	15.65	9.00	14.10	/ 00
1990	22.00	5.36	2.03	0.00	0.52	0.03	1.08	3.1Z 9.77	0.02	13.08	12.32	4.07
1998	1.21	5.40	2.06	0.37	0.52	0.23	0.71	2.60	6.40	8 51	10.22	9.00
1000	3.64	1.40	0.30	0.70	0.02	0.32	0.71	2.00	5.22	6.65	8 57	12.16
2000	2 71	0.91	0.57	0.47	0.07	0.71	0.40	5.71	4 75	22.35	26.07	22.10
2000	2.71	1 35	0.54	1.82	0.37	0.10	1.63	3.71	8 30	11 56	16 31	5 15
2001	2.00	1.35	0.03	0.32	0.79	1 1 2	0.78	3.70	3 55	3.08	10.31	6.02
2002	4.74	1.47	0.44	0.32	0.27	0.27	0.70	0.75	3.33	6.47	9 /1	4.80
2003	6.26	1.11	0.00	0.40	0.24	0.27	4.87	5 21	13.01	7 01	16.72	6.33
2004	0.20	1.05	0.47	0.55	0.27	0.10	4.07	5.51	15.01	1.71	10.72	0.50
State 1	<0.15	State 2	0.15-1	State 3	1-10	State 4	10 - 20	State 5	> 20			

Figure 3.2 Graphic representations of the occurrence of the abiotic states under the Present State

3.2.1.2 Present flood regime

As the Palmiet Estuary is a relatively small estuary, the underlying assumption for the flood analyses was that small floods would reset the sediment processes in the estuary, but that the frequency with which these events occur was important as this drives the rate at which the deposition/erosion cycles of the sediments occur.

To undertake a first assessment of the effects of the present level of development on the incidence of floods, the occurrences and magnitudes of the highest average monthly flows are listed in Table 3.5 for the period October 1928 until September 2005 for which data for all scenarios are available.

Year	Month	SIMULATED HIGHEST AVERAGE MONTHLY FLOWS (m ³ s ⁻¹)					
		Reference	Present				
1974	Aug	50.11	37.30				
1993	Jul	46.92	47.18				
1944	Jun	42.29	21.41				
1945	Jul	41.73	42.41				
1994	Jun	39.07	20.07				
1954	Jul	38.77	37.69				
1992	Jun	38.39	24.39				
1945	Jun	36.43	24.19				
2001	Jul	36.38	22.35				
1955	Aug	35.82	30.18				
1986	Aug	35.67	32.25				
1954	Aug	35.03	36.06				
1959	Мау	34.08	18.42				
1937	Jul	33.52	24.00				
1977	Jun	33.23	29.35				
1977	Jul	32.92	33.90				
1957	Jun	32.01	20.46				
1942	Jun	31.55	19.96				
1951	Jun	31.37	19.41				
1977	Aug	30.99	31.90				
1963	Aug	30.57	25.08				
1976	Jun	30.12	11.60				
Average of	the 22 events	36.23	27.71				
% Similar t	o Reference	76					

Table 3.5 Highest monthly flows (in m³s⁻¹) in the Palmiet River simulated data for October1928 to September 2005 for the Reference Condition and Present State

Simulated daily flow data for the period October 1963 to September 2005 were also analysed to estimate the effects of the different scenarios on the occurrence of floods, the occurrences and magnitudes (Table 3.6).

Table 3.6Palmiet highest daily flows (in m³s⁻¹) simulated data for October 1928 to September1963 for the Reference Condition and Present State

Flow (m ³ s ⁻¹)	Natural	Present
Average	8.147	5.184
Occurrence of floods ex	ceeding:	
>150	3	1
100-150	31	8
75 – 100	82	25
50 -75	137	81
Total	253	115
% Occurrence in relatio	n to Reference Condition	
>150	-	33
100-150	-	26
75 – 100	-	30
50 -75	-	59
Average	-	45

The simulated runoff data shows that for present conditions the highest monthly flow was 47 m³s⁻¹ in July 1993. For the 77-year period, an average monthly flow higher than 30 m³s⁻¹ was exceeded 9 times. These exceedances occurred 4 times in July, and 5 times in August. Such events therefore occur later in the year compared to natural conditions.

An analysis of the simulated daily flow data indicates that the occurrence of daily flows higher than 75 m³s⁻¹ have been reduced between 67 to 74%, depending on the size class. As the Palmiet Estuary is a relative small system, smaller events (flows higher than 50 m³s⁻¹) may also assist in maintaining the sediment equilibrium, i.e. removing sediment from the mouth region and basin. Daily flows between 50 m³s⁻¹ and 75 m³s⁻¹ have been reduced by 41%. The total reduction in the occurrence for daily flows higher than 50 m³s⁻¹ is 55%. In general, compared to the natural conditions, a reduction in the occurrence and magnitude of major floods is observed, but such floods are still occurring.

Thus the flood analysis indicates that there is about a 40% reduction in the occurrence of large and intermediate floods to the Palmiet Estuary relative to the Reference Condition. The hydrological data indicate that the magnitude and occurrence of major floods have been reduced significantly.

Confidence: Medium

3.2.1.3	Anthropogenic influences, other than modification of river inflow, that are presently affecting	g
	abiotic characteristics in the estuary:	

Туре		Activity		Present	Describe impact				
-	Weirs			✓	Weir upstream prevent migration of fish				
	Bridge(s)		~	Bridges over the Palmiet presents no					
				obstruction to flow					
and	Artificial breaching		×						
e a	Mouth stabilisation		×						
sn	6 Bank stabilisation and		~	Retaining wall near the mouth					
-bd-	destabilisation								
Lar dev	Causeway			×					
	Marina development			×					
	Dredging			×					
	Mining (e.g. sand winning)		×						

Type	Activity	Present	Describe impact
	Poor agricultural practices (e.g. causing siltation)	~	On a limited scale
	Exceedance of carrying capacity resulting from boating, bathers etc.	×	
	Low-lying developments	×	
	Lack of maintenance of infrastructure (e.g. roads and bridges)	×	
	Migration barrier in river	×	
	Other	×	
	Agricultural and pastoral run-off containing fertilisers, pesticides and herbicides	\checkmark	Yes
	Waste water treatment works	×	
itity	Municipal waste (including sewage disposal)	×	
Quar	Industrial effluent (including cooling water) discharges	×	
p	Litter	✓	Limited
a l	Mariculture waste products	×	
uality	Pollution related to shipping activities in harbours	×	
Water Qu	Septic and conservancy tank seepage	×	
	The inflow of contaminated storm- water or groundwater	×	
	Lack of maintenance of infrastructure (e.g. sewage works)	×	
	Other water quality activity	×	
	Waste water treatment works	×	

3.2.1.4 Present sediment processes

If the period between flood events increases, this leads to infilling of the lower regions by marine sand through wave action during such a period. The net result is reduced inter and sub-tidal habitat in the lower reaches as this is smothered by sediments between floods.

The Palmiet catchment has a naturally low sediment yield. Under present conditions, however, what little sediment would have came down is trapped in upstream dams, which in turn reduces the infilling of some of the rocky areas in the upper reaches. The net result are markedly more rocky upper reaches than would have occurred under natural conditions.

Confidence: Medium

3.2.1.5 Droughts

Hydrological drought conditions in the Palmiet Estuary are defined as years in which the annual inflow (million m³) falls below the Reference Condition 10% ile, i.e. 175 million m³. Under the Present State, annual flows are less than 175 million m³ for approximately 65% of the time. An analysis of the 77-year period also highlights the occurrence of extended drought periods varying between 4 to 10 years in a row (Figure 3.3).

Figure 3.3 Occurrence of 'drought' conditions in the Palmiet Estuary under the Present State

3.2.2 Biotic Components

3.2.2.1 Response of biotic components

Table 3.7 summarises the effect of abiotic characteristics and processes, as well as other biotic components on the biota of the Palmiet Estuary.

Table 3.7 The effect of abiotic drivers (and other biotic components) on the biota of the Palmiet Estuary

	Mouth condition (provide temporal implications where applicable): The condition of the mouth
	can affect intertidal benthic microalgal biomass because the intertidal babitat is lost when the mouth
	closes and the water level rises interval misroplace (apparally the more mobile misroplace) taxa)
	closes and the water level rises. Include inicidalgae (generally the more mobile microalgar taxa)
	would be absent from the estuary for States 1 and 2.
	Turbulent currents associated with tidal exchange limit benthic microalgal growth in the flood tide
	delta. Tidal exchange during open mouth conditions – States 3 and 4 - introduces marine species of
	microalgae and nutrients
	Experience of intervided excess during law tide: A large condition the western side of the lawer
	Exposure of intertitual areas during low fide. A large sand hat on the western side of the lower
	estuary (11 ha) is an important habitat for benthic microalgae. Taxa adapted to tidal exposure are
	lost if the mouth closes and the sand flat is flooded.
	Subtidal, intertidal and supratidal habitat: The total area of the estuary has been estimated to be
	23 ha with a high tide volume of 360,000 m ³ . The total area of water increased to 26.4 ha when the
	mouth of the optimizer load (2000 George Forth image)
	mouth of the estuary was closed (2009 Google Earth Image).
	The 11 ha sand flat provides an important habitat for intertidal microalgae when the estuary mouth
	is open and the estuary tidal; highest benthic microalgal chl-a (239 mg m ⁻²) was measured just
	above the mid-tide mark.
	Less than 40 he of the estimate is subtided. The applicant is seened and the tennin steined water limit
	Less than 12 ha of the estuary is sublidar. The sedment is coarse and the tannin-stained water limit
	subtidal benthic microalgal biomass.
	Sediment characteristics (including sedimentation): The sediment in the estuary is unusually
	coarse: 65% gravel and 34% sand (0.63 to 2 mm particle size). As a result, the sediment has a low
-	α and β a
Jae	organic content (<0.070), initially benaric microalgal biomass. The security in the support a healthy
	population of sand prawn and these are an essential source of nutrients for microalgae.
ö	Retention times of water masses: The estuary is small, making the retention times of water
<u>5</u>	masses very short, as a result of tidal exchange as well as river inflow. This is a major factor limiting
Ξ	phytoplankton biomass. The strong salinity gradient developed in state 3 provide conditions most
	suited to phytoplankton growth
	Elevisor valuation (a sticle valuation or river inflow valuation). The strong colinity gradient
	Flow velocities (e.g. than velocities of five inflow velocities). The strong samily gradient
	developed in state 3 provide conditions most suited to phytoplankton growth.
	Turbulent tidal and river inflow velocities limit subtidal benthic microalgal biomass at the head and
	mouth of the estuary. River flows typical of State 3 are ideal for microalgal growth. River flows lower
	than this support macrophyte growth and flows greater than this mobilise the sediment.
	Total volume and/or estimated volume of different salinity ranges: Shortly after a flood event
	the volume of the estuary should be at its lowest on the spring low tide: water surface area <12 ba
	The volume of bighter the estuary should be at its lowest of the sping low fuel, which shind a well developed
	The volume is highest when the estuary is closed and the water perched benind a well developed
	sandbar; water surface area >23 ha. This provides almost double the amount of available habitat
	for phytoplankton and subtidal benthic microalgae.
	Salinity: Salinity stays within the fresh to marine range and is unlikely to affect microalgal growth.
	However, when the mouth is closed the saline water at depth is likely to accelerate the
	decomposition of macroalgae and result in local hypoxic/apoxic conditions. This could provide
	suitable habitat for granophytos
	Suitable Habitat for Cyanobinytes.
	Other water quality variables (see above): Nutrient concentrations in the estuary probably limit
	microalgal growth. Microalgae will be competing with macroalgae for nutrients when there is limited
	tidal exchange and low river inflow (States 1 and 2).
	Other biotic components: Microalgae will be competing with macroalgae for nutrients during
	States 1 and 2 Invertebrates sand prawns in particular are capable of accumulating organic
	material in the burrows and will be an important source of nutrients for microaldae and macroaldae
	Material in the borrows and will be an important source of numerics for micrological and macroargae.
	mouth condition (provide temporal implications where applicable): Open mouth and intertidal
	conditions maintain the small salt marsh area. When the mouth is closed, there would be an
Ś	increase in the growth of filamentous macroalgae. Blooms of macroalgae could become a problem
۲,	if decomposition led to anoxic conditions and noxious odours. Prolonged inundation (greater than 3
Ę	months) because of mouth closure and increased water levels can reduce the growth of salt marsh
do	plants particularly during the growing season (spring summer)
5	planto, paraodiany danny the growing season (spring, summer).
Иа	An increase in comi closed mouth conditions would result in investation of the act mouth and
	An increase in semi-closed mouth conditions would result in inundation of the salt marsh area.
1	Proionged closure of the mouth and low river water input would deprive the estuary of a high
1	I proportion of organic material that would have an adverse effect on secondary production

	Exposure of intertidal areas during low tide: The intertidal habitat available for colonisation by estuarine macrophytes (i.e. salt marsh, reed and sedge communities) is very small because of the predominately rock lined banks. Intertidal habitat is lost when the mouth closes.
	Subtidal, intertidal and supratidal habitat: Intertidal and supratidal habitat is limited in the Palmiet Estuary because of the steep banks and small estuary size. This limits the area colonised by salt marsh and roads and sedage.
	Sediment characteristics (including sedimentation): Sedimentation and reduced flooding will
	result in macrophyte encroachment and an increase in the area occupied by salt marsh and reeds and sedges.
	Retention times of water masses: Macroalgae are abundant when the mouth of the estuary is closed and there is greater water retention. Increased nutrient concentrations from the reference to present condition would increase macroalgal growth.
	Flow velocities (e.g. tidal velocities or river inflow velocities): High flow and open mouth conditions flush out macroalgae.
	Salinity: Macroalgae: <i>Cladophora</i> spp can tolerate wide fluctuations in salinity and has been found growing in the Seekoei and Kabeljous estuaries in salinity of 15-43 ppt.
	Salt marsh: the grass <i>Sporobolus virginicus</i> and the rush <i>Juncus kraussii</i> , indicate brackish (< 15 ppt) conditions.
	Reeds and sedges: A number of grass, rush and sedge species grow on the rocky banks below the road bridge at freshwater seepage sites.
	Other water quality variables (see above): High nutrients increase macrophyte abundance. Blooms of macroalgae (particularly species of <i>Ulva, Enteromorpha</i> and <i>Cladophora</i>) have long been associated with nutrient enrichment. Filamentous algae depend on water column nutrients and, when they form mats on the bottom, they take up nutrients regenerated by microbial processes in the sediment. Robinson and Hawkes (1986) concluded that phosphate was the limiting nutrient for <i>Cladophora</i> growth. They further concluded that the critical phosphate level was 0.098 mg l ⁻¹ (critical nutrient level is the minimum concentration of an element required for maximal
	growth of the algal cells). Wong and Clark (1976) gave a value of 0.06 mg l ⁻¹ .
	the estuary may be dependent on imports of organic material from the river (Palmiet reed) and sea (kelp).
	There are no rooted submerged macrophytes (e.g. <i>Zostera capensis, Ruppia cirrhosa</i>) in the Palmiet Estuary. This can be attributed to the high flows, unstable substrate and low light permeability of the estuary.
	Mouth condition (provide temporal implications where applicable):
rtebrates	An open mouth is a critical driver of invertebrate health in the Palmiet. Tidal ebb and flow ensures a regular input of fresh seawater across the bottom and this ensures well- oxygenated bottom waters and relatively high salinity values for benthic organisms, particularly the sandprawn <i>Callianassa kraussi</i> and two species of amphipods – <i>Grandidierella</i> and <i>Corophium</i> . These three species are probably the most important invertebrates in the system, playing major roles in the foodweb and the breakdown of macrophyte debris. Their combined biomass (dry mass) probably exceeds 95% of total biomass in the estuary, including faecal matter produced by sandprawns. If the mouth closes, there is the potential for anoxic conditions to develop, particularly in summer because of higher water temperatures. Such conditions are likely to develop even within weeks of closure. Collectively, this will impact negatively on the benthic invertebrates, particularly below about 2 m water depth.
Inve	estuary during low tide is an important pumping mechanism that leads to the exchange of interstitial water, and hence maintains oxygen levels. Sandprawns will also actively pump water through burrows when the bank is covered, adding to the exchange of water and oxygen through the sediment.
	Subtidal, intertidal and supratidal habitat: Supratidal is limited for invertebrate (steepness of the banks) colonisation. The most important habitat is the subtidal, followed by the large sandbank in the lower estuary. If this sandbank is covered by water for long periods (weeks to months), <i>Callianassa</i> density may increase, due to migration of individuals from deeper areas as ogygen levels decrease in these channel areas. However, density of <i>Callianassa</i> will not remain high if salinity values decline and remain below above 17 ppt (<i>Callianassa</i> unable to breed successfully).

	Codiment observations (including codimentation). The conducted incut former the most
	Sediment characteristics (including sedimentation): The sandy sediment forms the most
	important habitat for invertebrates, although increasing sediment particle size in an upstream
	direction leads to lower abundance or biomass levels.
	Retention times of water masses: Increasing retention time will increase the probability of low
	oxygen conditions developing. If the system becomes stagnant for periods that exceed 1-2 months
	(particularly in summar), it is likely that water below as 1 m doubt (wind mixing) will become apovie
	(particularly in summer), it is likely that water below Car i in depth (whild mixing) will be one anoxic,
	causing major die-backs in the invertebrate fauna. Species richness is also likely to decline.
	Flow velocities (e.g. tidal velocities or river inflow velocities):
	Increased flow velocities will lead to an increase in average particle size of the sediment. If the
	sediment becomes too course, abundance/biomass of invertebrates will decrease.
	Total volume and/or estimated volume of different salinity ranges:
	It is important that salinity values remain above ca 17 ppt at least for $4-5$ months during summer
	This is the threaded required for Collingation to produce new require into the population.
	This is the threshold required for <i>Califariassa</i> to produce new rectures into the population. The
	amphipods are less-affected, as their tolerance levels are much wider. If freshwater conditions
	persist throughout the water column, amphipods will not be able to breed successfully.
	Salinity: Salinity values should not fall below 15-20 ppt during late winter and spring, as this is the
	main breeding season for Callianassa.
	Other water quality variables (see above):
	Other biotic components: Expansion of the macrophyte beds in the estuary will decrease
	available habitat for species such as <i>Callianassa</i> that utilise non-vegetated areas particularly.
	Increasing macrophyte coverage will also lead to a change in the invertebrate species mix.
	Mouth condition (provide temporal implications where applicable): The mouth needs to be
	open during the peak recruitment period of August to December. Semi-closed conditions are also
	sufficient for recruitment The semi-closed (and limited closed) conditions that persist for much of
	Sunder to recould in the semiclosed (and initial closed) conditions that persist to much be
	December-watch result in low oxygen conductions in the deeper areas. Consequency, bentilic hist
	species such as Cattrogobius spp. and Solea bleekeri are limited throughout the system. The only
	benthic fish in any quantity is <i>Psammogobius Knysnaensis</i> , which occurs predominantly in the
	shallower, over-washed, sandy reaches near the mouth.
	This said, low salinities due to closed, semi-closed and high flow conditions are likely to drive
	benthic invertebrates, notably Callianassa kraussi, deeper into the sediment in search of higher
	salinities. This will reduce prev availability for the benthic feeding Lithognathus lithognathus.
	Rhabdosardus diobicens and R holubi Consequently, these species can be expected to be in low
	numbers in the actuary
	numbers in the estuary.
	Microalgae biomass is the dominant food source of the 5 Muglillidae species in the estuary and also
	important to G. aestuaria and A. breviceps declines during states 1 and 2. Macroalgal biomass
	increases during states 1 and 2 benefiting Rhabdosargus holubi and Syngnathus temminckii but, if
Ļ	these states persist, low oxygen conditions could arise from decomposition and night time
	respiration.
_	Exposure of intertidal areas during low tide. This is important for mullet Compared to other
	systems limited benthic microalize production increases the importance of detritus from upstream
	and from resusponsion of faceal and other material during high lide
	and from resuspension of raccal and other material during high fide.
	Subtidal, intertidal and supratidal nabitat: The subtidal nabitat is fairly homogenous but due to
	the high tannin levels in the water column, the entire subtidal is an ideal refuge. Fish will forage in
	the intertidal during high tide and find limited refuge in the supratidal inundated during floods.
	Sediment characteristics (including sedimentation): Low organic content of the sediment and
	limited benthic microalgae accounts for low numbers of detritivores. Anoxic sediments, especially
	during states 1 and 2, limit benthic fish species and their invertebrate prev. Sandy sediments result
	in dominance by the Knysna sand-goby <i>Psammogobius knysnaensis</i> . Numbers of this species will
	also be appared by C kraussi burrows with which it appare to have a symbiotic/commonsal
	relationship?
	Telationship
	Retention times of water masses: High retention times result in benthic anoxia and low numbers
	of benthic species.
	Flow velocities (e.g. tidal velocities or river inflow velocities): Unlikely to be an issue except
	during floods when the homogenous nature of the system will limit standing-waves, eddies and
	other flow related refugia.

	Total volume and/or estimated volume of different salinity ranges: The fish assemblage is
	typical of a blackwater system and able to withstand low salinities for prolonged periods. The
	impacts of low salinities on fish are likely to be more due to the knock on effects of invertebrates
	and algae. Overall, volume dictates the dispersal of fish throughout the system and their
	vulnerability to predation.
	Salinity: The fish assemblage is dominated by species with a preference for (e.g. Monodactylus
	falciformis, Myxus capensis, Gilchristella aestuaria) or tolerant (e.g. Liza richardsonii, Atherina
	breviceps) of low salinities. The 5-25 ppt range experienced throughout most of states should be
	ideal for most estuarine associated species which, coupled with state 3 during summer, should see
	an influx of these and marine species, thereby increasing diversity.
	Other water quality variables (see above): Hypoxic or anoxic conditions during states 1 and 2
	may negate many benefits of ideal salinity ranges in the estuary. It also needs to be noted that
	there is extensive crop spraying in the middle and upper reaches of the catchment and that water
	levels rise and fall daily according to hydro requirements (check).
	Other biotic components: Catadromous eels Anguilla mossambica recruit via the estuary into the
	freshwater reaches of the catchment, as do the facultative catadromous Myxus capensis and
	freshwater loving <i>M. falciformis</i> and <i>M. cephalus</i> . High densities of, and predation by, the
	introduced smallmouth bass Micropterus dolomieu immediately after the head of the estuary may
	compromise recruitment. In turn, although easily overcome by A. mossambica, the weir
	immediately upstream of the estuary completely blocks all recruitment by M. falciformis, Myxus
	capenis and Mugil cephalus into the freshwater reaches.
	Mouth condition (provide temporal implications where applicable): Little direct effect, only
	indirect, through impacts on habitat and food. Main effect is on terns, with open mouth providing
	suitable feeding conditions.
	Exposure of intertidal areas during low tide: Tidal exposure is essential for many estuarine bird
	species, with the majority of estuarine species depending on these habitats for food, and several
	more using intertidal areas for roosting.
	Subtidal, intertidal and supratidal habitat: Subtidal habitat is not directly important except where
	<30cm. Intertidal habitat is the most important, and supratidal habitat may also be important,
	especially for non-feeding activities, though not in the case of the Palmiet.
	Sediment characteristics (including sedimentation): Sediment characteristics affect the food
	and reeding methods of estuarine birds, with different species being adapted to different conditions.
s	Thus a change in characteristics is likely to allect bird community composition.
ird	Retention times of water masses: No direct impact.
ä	Flow velocities (e.g. tidal velocities or river inflow velocities): Can affect foraging by
	piscivorous birds, but only at very high velocities
	I otal volume: No direct impact. Inundation of intertidal nabitats would lead to reduction in bird
	numbers.
	Salinity: Most estuarine birds tolerate a wide range of salinities, but a few species are typical of
	more freshwater or marine habitats, and the abundances of these species would be affected by
	change.
	Other water quality variables (see above): Sediment particle size is important in determining
	species composition and bird densities, with muddy (not slity) habitats being important for foraging.
	Increased numeric loading would lead to increased bird biomass due to increased food supplies
	other biotic components: Since estuarine bird species comprise herbivores, invertebrate feeders
	and piscivores, the abundance of other plotic components is critical in terms of food availability.
	Abundance in certain size classes is also a key factor.

Table 3.8 summarises the living resources utilisation and how it is affecting the biota in the Palmiet Estuary.

Activity	Present	Describe impact			
Recreational fishing	Yes	 Number of anglers: Similar to adjacent coastline, approximately 1 km⁻¹.day⁻¹. Increase in fly-fishing in recent years. There is angling for <i>M. dolomieu</i> at the head of the estuary and illegal fishing for eels further upstream. Number of boats: None, occasional angling from canoes and kayaks. Tonnage harvested: approximately 200 kg.yr⁻¹ due to angling and castnetting. Species targeted and their status (e.g. collapsed): Twelve species caught. Of these, <i>L. lithognathus</i> and <i>R. globiceps</i> are collapsed, <i>L. amia, L. richardsonii</i> and <i>P. saltatrix</i> are overexploited and <i>M. capensis</i> is regarded as particularly vulnerable to anthropogenic influences other than fishing. 			
Commercial/Subsistence fishing (e.g. gillnet fishery)	No				
Traditional fish traps	No				
Illegal fishing (Poaching)	Yes	Number of operators: Unsubstantiated number of illegal eel fishers in the freshwater reaches immediately above the estuary. Tonnage harvested: unknown Species targeted and their status: Anguilla mossambica, vulnerable due to catchment degradation, overfishing historically, introduced pathogens and collection of recruiting glass eels for mariculture. Number of harvesters: Higher during holiday periods, approximately 10 maximum observed at any one time. Very			
Bait collection	Yes	difficult to pump sandprawn when conditions fresh. Biomass harvested: low, < 50 person ⁻¹ .hour ⁻¹ Species targeted: <i>Callianassa kraussi</i>			
Aquarium fish collecting	No				
Inappropriate levels of recreational activities (e.g. fishing competitions)	No				
Mariculture	No				
Harvesting of plants	N/A				
Grazing of salt mashes	N/A				
Translocated or alien fauna and floraYesSpecies: Smallmouth Largemouth bass <i>M. salmoides</i> and bluegill sunfish <i>Leg macrochirus</i> at the head of the estuary. Numbers or area (ha) inhabited: Throughout fresh reaches of the catchment.		Species: Smallmouth bass <i>Micropterus dolomieu</i> , Largemouth bass <i>M. salmoides</i> and bluegill sunfish <i>Lepomis macrochirus</i> at the head of the estuary. Numbers or area (ha) inhabited: Throughout freshwater reaches of the catchment.			

Table 3.8	Summary	of the living	resources	utilisation	in the Palmi	et Estuary

3.2.2.2 Description of Present State

MICROALGAE

At present, the estuary is predominantly in State 2 during the dry summer months (December-April) and in State 3 during the wet winter months (May-November). Based on the simulated flows for the past 77 years, the estuary has a 7.8%, 79.2% and 33.8% chance each year of experiencing States 1, 4 and 5 respectively. As a result, conditions in the Palmiet Estuary can range from closed mouth conditions with very little river inflow to turbulent flood conditions.

Phytoplankton

Branch and Day (1984) measured phytoplankton chl-a that ranged from 2.12 to 7.76 μ g L⁻¹ in December, and 1.48 to 4.82 μ g L⁻¹ in April. These concentrations were low when compared to other permanently open estuaries

but higher than expected in such a short estuary with a fast flow regime. Measurements suggest that phytoplankton cells were imported from the river and sea. A small dam, just behind the weir above the coastal road, may be the source of the phytoplankton biomass as there was little evidence of phytoplankton in the river upstream of the weir (Branch and Day 1984).

Phytoplankton status is likely to be controlled by the following processes during the various states;

- State 1: Low biomass due to competition for nutrients from macroalgae
- State 2: Low biomass but could increase in short term due to nutrient-rich freshets
- State 3: Intermediate biomass; limited by large tidal exchange
- State 4: Low biomass due to high river flow and short retention time
- State 5: Low biomass due to high river flow and short retention time

Benthic microalgae

The total area of the estuary, during the tidal state, is estimated to be 23 ha. A large sand flat, ~11 ha, on the western side of the estuary becomes exposed during low tides and provides an important available habitat for benthic microalgae. Branch and Day (1984) and Adams and Bate (unpublished data) recorded the highest benthic microalgal chl-a on the sand flat just above the mid-tide level. The estuary was sampled on 11 March 1992 and 22 November 1992 (Adams and Bate, Unpub. data) and intertidal chl-a ranged from 9 to 239 mg m⁻² (average = $105 \pm 71 \text{ mg m}^{-2}$) and subtidal chl-a from 0 to 38 mg m⁻² (average = $22 \pm 12 \text{ mg m}^{-2}$). These concentrations were similar to the nearby Berg Estuary, but lower than other South African estuaries.

A number of factors could influence benthic microalgal biomass in the Palmiet Estuary;

- The estuary is tannin-stained, limiting light penetration through the water column.
- Sediment in the estuary was dominated by gravel (65%) and sand (34%), which generally has a low organic content (<0.6%) and supports low microalgal biomass (Willis 1981).
- Turbulent tidal currents are capable of mobilising sediments. This is typical of sites near to the head and mouth of the estuary. Large floods (>500 m³ s⁻¹) are capable of completely removing the sand flat area on the west bank.
- Nutrient concentrations are generally low in the estuary (DIN and DIP). However, sand-prawns accumulate organic matter in their burrows, potentially providing nutrients for microalgal and macroalgal growth.
- The condition of the mouth can affect intertidal microalgae because the intertidal habitat is flooded when the mouth is closed (States 1 and 2).

Benthic microalgal status is likely to be controlled by the following processes during the various states;

- State 1: Low biomass due to closed mouth, flooded intertidal zone and competition for resources with macroalgae
- State 2: Low biomass due to closed mouth, flooded intertidal zone and competition for resources with macroalgae
- State 3: Optimal biomass due to adequate tidal exchange and water level fluctuations
- State 4: Low biomass due to turbulent flow resulting in sediment mobilisation
- State 5: Low biomass due to turbulent flow resulting in sediment mobilisation

Confidence: Medium

MACROPHYTES

The small area of the Palmiet Estuary and the steep rocky banks restrict the development of estuarine plant communities. There are no rooted submerged macrophytes (e.g. *Zostera capensis, Ruppia cirrhosa*) because of high flows, unstable substrate and low light permeability of the estuary. The only comprehensive botanical survey of the estuary took place in the 1980s (Branch and Day 1984). They reported that the filamentous green algae *Cladophora* and *Enteromorpha* occurred in the estuary between December and April. These macroalgal mats would cover an area of approximately 1 ha. On the central, eastern bank of the estuary a small salt marsh (0.1 ha) exists on a sheltered region of the sandflat. Heydorn and Morant (1989) reported 12 different salt marsh species. Dominant species were the rush, *Juncus kraussii* and the grass *Sporobulus virginicus*. These plants indicate persistent brackish (< 15 ppt) rather than saline conditions. The status of the macrophytes for the different abiotic states would be as follows:

	State 1 Closed	State 2 Semi - open	State 3 Open	State 4	State 5
Macroalgae	Abundant particularly in summer	Abundant particularly in summer	Present	Absent due to increase in flow	Absent high flow
Salt marsh	Die-back after 3 months inundation	Die-back after 3 months inundation	Abundant : tidal conditions	Present	Present : possible removal due to high flow
Reeds and sedges	Decreased growth if inundated for > 3 months spring / summer	Decreased growth if inundated for > 3 months spring / summer	Present	Present	Present : possible removal due to high flow

Confidence: Medium

INVERTEBRATES

Zooplankton

No comprehensive study of the zooplankton has been undertaken, but biomass values provided by Branch and Day (1984) indicate a very depauperate fauna. This is typical for black-water systems, and zooplankton is unlikely to play an important part in the functioning of the estuary.

Benthic invertebrates

The number of invertebrate species in the estuary is low (28). Most of these are benthic (>75%), with some associated with rocky substrata (2 species) and about 4-5 insect species spending part of their life cycle in the aquatic medium. The sandprawn is the dominant species from a biomass perspective (ca 50%), followed by the amphipod *Grandidierella* sp. and the gastropod *Hydrobia* sp.

Hyperbenthos

Not known, but it is predicted that the hyperbenthos is extremely low in biomass or abundance.

Intertidal macrofauna

The sandprawn *Callianassa kraussi* colonises the intertidal sandbank in the lower estuary, equating to about 35% of the total surface area of the estuary covered by high tide. The gastropod *Hydrobia* and the polychaete *Ceratonereis* are also important on the intertidal sandbank, although from a biomass perspective, they probably contribute <10% to total intertidal biomass.

Confidence: Medium

FISH

A total of 25 fish species representing 16 families have been recorded from the Palmiet Estuary (Lamberth, unpublished, Bennett 1981, 1989a,b, Branch and Day 1984). Five of these are entirely dependent on estuaries to complete their lifecycle. These are *Gilchristella aestuaria*, which breeds only in estuaries, and *Lichia amia*, *Mugil cephalus*, *Myxus capensis* and *Lithognathus lithognathus*, which are dependent on estuaries as nursery areas. A further 14 species, e.g. *Pomatomus saltatrix* and *Solea bleekeri*, are at least partially dependent on estuaries. In all, 90 % of the fish species recorded from the Palmiet can be regarded as either partially or completely dependent on estuaries for their survival. The remaining six species recorded from the estuary are the indigenous freshwater Cape galaxias *Galaxias zebratus* and Cape kurper *Sandelia capensis*, the euryhaline freshwater introduced small and largemouth bass, *Micropterus dolomieu* and *M. salmoides* and bluegill sunfish Lepomis macrochirus, and the indigenous catadromous eel, *Anguilla mossambica*. No purely marine species have been recorded from the Palmiet Estuary.

A list of all species recorded in the Palmiet Estuary by reliable observers (a), by Bennett 1981 (b) and during a 1997-1998 seine and gill-net study (c). The species are classified into five major categories of estuarine-dependence as suggested by Whitfield 1994.
Family name	Species name	Common name	Recorded	Dependence
,			by	category
Anabantidae	Sandelia capensis	Cape kurper	а	IV
Anguillidae	Anguilla mossambica	Longfin eel	а	V
Ariidae	Galeichthys feliceps	Barbel	b	llb
Atherinidae	Atherina breviceps	Cape silverside	b,c	lb
Carangidae	Lichia amia	Leervis	b,c	lla
Centrarchidae	Lepomis macrochirus	Bluegill sunfish	а	IV
	Micropterus dolomieu	Smallmouth bass	С	IV
	Micropterus salmoides	Largemouth bass	С	IV
Clupeidae	Gilchristella aestuaria	Estuarine	b,c	la
		roundherring		
Galaxiidae	Galaxias zebratus	Cape galaxias	а	IV
Gobiidae	Caffrogobius	Prison goby	b,c	lb
	multifasciatus			
	Psammogobius	Knysna sand-goby	b,c	lb
	knysnaensis			
Monodactylidae	Monodactylus falciformis	Cape moony	b,c	llb
Mugilidae	Liza dumerilii	Groovy mullet	b	llc
	Liza richardsonii	Harder	b,c	llc
	Liza tricuspidens	Striped mullet	b	llc
	Mugil cephalus	Springer mullet	b,c	lla
	Myxus capensis	Freshwater mullet	b,c	lla
Pomatomidae	Pomatomus saltatrix	Elf	b,c	llc
Soleidae	Solea bleekeri	Blackhand sole	b,c	llb
Sparidae	Lithognathus lithognathus	White steenbras	b	lla
	Rhabdosargus globiceps	White stumpnose	b,c	llc
	Rhabdosargus holubi	Cape stumpnose	b	llc
Syngnathidae	Syngnathus acus	Pipefish	b	lb
Teraponidae	Terapon jarbua	Thornfish	b	llb

Excluding the two indigenous and three introduced fish of freshwater origin, the 20 species listed in the Palmiet Estuary compare favourably with those recorded from the nearby, seasonally open Kleinmond Estuary (17 species), and normally closed Bot Estuary (12 species) (Bennett 1989). Entirely estuarine-dependent species compromise 24 % of the Palmiet species, compared to 33 % and 43 % in the Kleinmond and Bot estuaries respectively. Partially estuarine-dependent species comprise 67 % of the Palmiet Estuary fish fauna, which is higher than the 56 % of the Kleinmond and 43 % of the Bot estuaries. The relatively low proportion of entirely estuarine-dependent and high proportion of partially dependent species in the Palmiet compared to the Kleinmond and Bot is related to the duration of mouth closure. The normally closed Bot Estuary favours species that can complete their entire lifecycle in estuaries, whereas the seldom-closed Palmiet Estuary provides more opportunity for species that recruit from the sea. The importance of the Palmiet Estuary to these species is highlighted by the observation that it is the only permanently open estuary along the approximately 650 km between the Berg River in the west and Breede River on the south coast (Branch and Day 1984). During dry years, many of the estuaries in the southwestern Cape close prematurely in spring or remain closed throughout the year, hindering the recruitment of estuarine-dependent species that were spawned at sea. Although small, in some years the normally-open Palmiet may be the only estuary in the region preventing recruitment failure of some species.

Species	composition	and	abundance	(catch	per	haul)	in	monthly	seine	net	samples	from	the	Palmiet
Estuary.	Shading indi	cates	s months in v	vhich ne	ew re	ecruits	wer	e record	ed. Aft	er Bo	ennett 198	31 and	198	39a.

					Ca	atch pe	er haul						Total
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	catch
Liza richardsonii	218	1329	146	149	1154	381	295	73	307	54	8	326	9 173
Atherina breviceps				24	3900				34	2		5	7 975
Psammogobius knysnaensis	8	71	31	14	23	26	35	5	7	13	4	3	501

Lithognathus lithognathus	7	65	15	4						11	25	65	389
Liza dumerilii				30	7								132
Myxus capensis	1		7	8	9				4	1	4	4	88
Gilchristella aestuaria	5	26	4								5		77
Rhabdosargus			_									-	
holubi	1	6	5	2								2	34
Rhabdosargus	4	2	2	2							2	2	21
globiceps	I	3	2	3							2	3	31
Mugil cephalus			1	2						1	3		16
Caffrogobius		1	2	1					1	2			11
multifasciatus			2						1	2			
Pomatomus	1											2	5
saltatrix	•											-	Ũ
Lichia amia	1	1	1									1	5
Solea bleekeri	1		1								1		3
Liza tricuspidens		1											1
Total	241	1499	211	236	5092	407	330	77	352	84	49	408	18 441
Number of species	10	9	11	10	5	2	2	2	5	7	8	9	
Number of species recruiting	4	4	4	6	3	1	1	2	1	4	3	4	

3.2.3 Distribution and abundance

A total of 18 442 fish, representing 15 species from 8 families, were caught in 26 seine-net hauls during the period April 1980 – April 1981 (Bennett 1989). In terms of numbers, two species, namely *Liza richardsonii* (50%) and *Atherina breviceps* (43%) together provided 93% of the total catch. However, whereas catches of *L. richardsonii* were fairly consistent and dominant throughout the year, the bulk of the *A. breviceps* catch was made in one haul. A further three species, *Psammogobius knysnaensis* (3%), *Lithognathus lithognathus* (2%) and *Liza dumerili* (1%) comprised most of the remaining catch. Overall catch per unit effort (*cpue*) was 79 fish.haul⁻¹ or 3.8 kg.haul⁻¹.

Liza richardsonii had the highest frequency of occurrence and was caught in all hauls throughout the year. Other species with high frequencies of occurrence were *P. knysnaensis* (88 %), *Myxus capensis* (50 %) and *L. lithognathus* (46 %) (Bennett 1989a). Catch per unit effort varied seasonally, being highest in autumn (May, 5 092 fish.haul⁻¹) and midsummer (February 1 499 fish.haul⁻¹), and lowest in early summer (November, 49 fish.haul⁻¹). The number of species caught was highest in late summer with a maximum of eleven in March, and lowest in winter when only two species were caught from June through to August. Multidimensional classification and ordination grouped these fish catches into winter (June-September), summer (October – February) and autumn (March – April) (Bennett 1989a).

Overall, fish numbers are low. Phytoplankton biomass is low throughout all 5 states, favouring *Atherina breviceps* over *G. aestuaria*, the former being a more accomplished clearwater selective feeder. Low benthic algal biomass accounts for the relatively low numbers of Mugilidae compared to other estuaries. High macroalgal biomass during the summer months can provide habitat for *Syngnathus temminckii* and *Rhabdosargus holubi*, but night-time respiration and eventual decomposition may lower oxygen levels, thus excluding them. Low benthic oxygen conditions during states 1 and 2 may account for the low numbers of benthic species such as *Solea bleekeri* and *Caffrogobius* spp. for much of the time.

Of the fourteen sea spawning estuarine-dependent species listed in the table above, ten spawn during winter and/or spring which enables them to enter estuaries in early summer when flows are reduced but the mouths still open. Bennett (1981) recorded nine species recruiting into the Palmiet Estuary, of which seven enter the system during the summer months. One species, *Myxus capensis* recruited during spring and summer, whereas *L. richardsonii* recruited throughout the year. Ripe adults of five species were observed in the Palmiet Estuary from September through to March, none during the winter (Bennett 1981). These were *L. richardsonii*, *M. capensis*, *P. knysnaensis*, *Syngnathus acus* and *G. aestuaria*. No 'ripe and running' fish were observed during Bennett's (1981) study.

Bennett (1989b) found no clear seasonal patterns in food preference for any of the fish species examined from the Palmiet Estuary. It is likely however, that food availability drops during the winter floods when much of it is washed out to sea. In general, small juveniles (< 30 mm) of all species fed almost exclusively on zooplankton before switching to their adult diets. Three species, *L. lithognathus, Rhabdosargus globiceps* and *Rhabdosargus holubi* were omnivorous, two; *Lichia amia* and *Pomatomus saltatrix* were piscivorous whereas the five mullet species were detritivorous. The remaining 11 species were carnivorous, feeding largely on small invertebrates.

Confidence: Medium

BIRDS

In total the estuary covers an area of about 23 ha, and at high tide has a volume of approximately 360 000m³ (Branch and Day 1984). The intertidal sand flat has an area of about 11 ha. In addition, there is a small area of saltmarsh of less than 1 ha. Due to the scouring action of floods, the estuary's sediments are unusually coarse. Sand makes up most of the sediment of the estuary, and the muddy component is virtually insignificant (Branch and Day 1984).

Run-off is highly seasonal, with high flows and major floods occurring during winter months and low flows during summer. Strong stratification occurs throughout the year. Clear sea water penetrates almost to the head of the estuary during summer, but does not penetrate far during winter. This salt water is overlaid by dark humic-acid stained fresh water (Branch and Day 1984).

The Palmiet River estuary contains relatively few waterbird species relative to other estuaries in the region. A total of 24 waterbird species have been recorded on the estuary, of which at least three (African Penguin, Arctic Tern and Sand Martin) are probably not very frequent visitors to the estuary. A total of 30 birds were counted on the estuary in 1981, and 474 were counted in 1997, including a flock of 400 terns. For the sake of comparison, the top 10, 20 and 40 estuaries in the country for waterbirds contain at least 43, 34 and 21 species, and at least 13 000, 2200 and 580 birds, respectively (Turpie 1995).

Waterbird species recorded on the Palmiet Estuary (Underhill and Cooper 1984, Clarke 1989, this study), and the numbers recorded in January 1981 (Underhill and Cooper 1984) and December 1997 (Turpie 1998) include:

Species	January 1981	December 1997
African Penguin*		
Whitebreasted Cormorant	2	15
Cape Cormorant	1	
Reed Cormorant		4
Darter		
Little Egret		1
African Spoonbill		
Egyptian Goose		
Cape Shoveller [#]		2
Osprey	1	1
African Black Oystercatcher [#]		1
Whitefronted Plover		2
Sanderling		
Common Sandpiper	11	
Greenshank	2	
Kelp Gull		18
Hartlaub's Gull [#]	10	29
Common Tern		330
Arctic Tern		
Sandwich Tern		30
Swift Tern		40
Pied Kingfisher		
Sand Martin		
Cape Wagtail [#]	3	1

* Red Data Species (Brooke 1984).

Endemic to southern Africa.

In addition, the estuary does not support important populations of any species of conservation significance. The

only Red Data species recorded in the area, the African Penguin (Barnes 2000), is likely to have been recorded on the beach in front of the estuary, and is certainly not in anyway dependent on the estuary. Thus the estuary is not of particular importance in terms of its waterbirds.

The estuary's avifauna is dominated by terns and gulls. Terns were not recorded during the 1981 survey, but fairly high numbers were recorded in 1997, and several were present during a site visit in September 2009. The presence of terns in the estuary is probably highly variable on a tidal as well as a seasonal basis. These terns probably forage mainly at sea, but they also forage to some extent in the lower estuary. Terns roost on the intertidal flats within the estuary at low tide, as well as on the sand spit at the mouth at high tide. Gulls are relatively common on the estuary, and their increase in numbers probably reflects their general population increases in the south-western Cape to some extent. Kelp Gulls use the estuary as a roosting site, concentrating mainly on the sand spit near the mouth, but also using the intertidal flats at low tide. Hartlaub's Gulls, on the other hand, feed in the estuary on the sandflats at low tide.

Waders are conspicuously absent from the estuary, in spite of a relatively large area of intertidal flats, which have a reasonably high invertebrate biomass per unit area (Branch and Day 1984). In 1981, waders were virtually absent from the count, except for Common Sandpipers and Greenshank. Common Sandpipers prefer rocky and relatively fresh-water habitats, where they forage solitarily and usually occur at very low densities. The number recorded was thus probably a communal roost of birds from the estuary and areas beyond.

African Black Oystercatchers are primarily coastal, rather than estuarine, birds, and breed and feed mainly on the rocky and sand shores on either side of the estuary. Although the conservation of African Black Oystercatchers in this area is currently of considerable concern due to the escalating threats of human and vehicle disturbance, it is unlikely that the Palmiet River Estuary is important for this species, owing to the paucity of suitable prey species such as pencilbait (*Solen* spp.) (Branch and Day 1984). The estuary may, however, provide a refuge for the birds when disturbed from their coastal territories. Similarly, Whitefronted Plovers, which generally prefer sandy habitats, were recorded on the sand spit at the mouth, and probably do not enter the estuary much beyond this area.

Despite the fact that several suitable prey species, such as polychaete worms (*Ceratonereis*) exist on the estuary, there is also an almost total absence of small waders such as Curlew Sandpipers, which are normally common on predominantly open estuaries. The absence of larger waders could be explained by a lack of large surface-active macroinvertebrates such as crabs, although the cryptic *Hymenosoma* crabs were recorded in low numbers (Branch and Day 1984). The absence of these birds may not be due to the lack of food *per se*, but could be due to other limiting factors, such as the lack of a suitable high tide roost site on the estuary.

The low overall numbers of birds on the estuary have been ascribed to the small size of the estuary, and possibly to human disturbance (Clarke 1989). Apart from the influence of overall size of the estuary, the low numbers and diversity of birds on the Palmiet River estuary can probably be ascribed to its low nutrient status and lack of habitat diversity and resultant lack availability of food in the system.

The low diversity of habitats is partly ascribed to the steep-sided nature of most of the estuary, as well as the surrounding vegetation. There is a notable absence of emergent and overhanging vegetation, and even of intertidal saltmarsh. These habitats, particularly the first two, would ordinarily attract additional species to the area because they provide cover, roost sites and hunting perches. The saltmarsh vegetation is too restricted in area to be of any significance to the avifaunal community.

The diversity of food available in the estuary for birds is relatively low. There is very little in the way of vegetation or algae in the estuary (at least during summer), and no herbivorous species have been recorded. Probably largely due to the coarse, sandy sediments of the estuary, the diversity of invertebrates is relatively low. However, the invertebrate community is characterised by relatively high densities of a few dominant species, and biomass reaches 35g.m⁻² at the mid-tide level on the sand flats (Branch and Day 1984). *Callianassa* densities are also high, but generally not available to birds. Fish diversity is relatively high compared to other estuaries in the region, and juvenile abundance is high. It is thus not surprising that piscivorous birds, such as terns, cormorants, kingfisher and osprey dominate the estuary avifauna.

Confidence: High

3.3 REFERENCE CONDITION

3.3.1 Abiotic Components

3.3.1.1 Seasonal variability in river inflow

Under the Reference Condition, the mean annual runoff (MAR) into the Palmiet Estuary was c. 256.3 million m³.

The flow distributions (mean monthly flows in m^3s^{-1}) under the Reference Condition, derived from a 77-year simulated data set is provided in Table 3.9. The full 77-year series of simulated monthly runoff data for the Reference Condition is provided in Table 3.10. A graphic representation of the percentage occurrence of the various abiotic states is presented in Figure 3.3.

Table 3.9 A summary of the monthly flows (m³s⁻¹) distribution under the Reference Condition

	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	20.75	12.24	8.20	7.55	6.28	6.35	17.60	26.86	39.84	42.97	39.25	27.57
90%ile	13.94	7.61	4.33	2.70	2.45	2.85	9.03	18.82	30.62	28.02	27.31	21.39
80%ile	11.14	5.75	2.38	1.71	1.80	1.88	5.47	12.09	23.02	24.86	23.17	16.63
70%ile	9.18	4.90	2.12	1.47	1.53	1.47	4.15	10.03	18.64	22.68	20.43	15.54
60%ile	7.01	4.53	1.89	1.19	1.13	1.23	3.03	8.61	15.99	19.08	19.09	13.76
50%ile	6.41	3.80	1.80	1.14	1.07	1.09	2.40	6.99	12.31	17.07	16.47	12.65
40%ile	5.97	3.44	1.65	1.07	0.99	0.96	1.93	5.35	10.30	15.22	14.88	10.51
30%ile	5.43	3.13	1.57	1.02	0.94	0.86	1.60	4.68	7.92	12.81	13.29	9.19
20%ile	4.94	2.70	1.47	0.92	0.89	0.80	1.41	4.20	6.63	10.92	11.57	7.73
10%ile	4.13	2.33	1.28	0.84	0.82	0.75	1.02	2.91	5.17	7.93	10.08	6.54
1%ile	2.61	1.69	1.04	0.57	0.55	0.35	0.79	1.88	2.43	4.40	7.32	4.55

3.3.1.2 Reference flood regime

Floods would have been about 25% greater and occurred about 55% more frequently under the Reference Conditions.

Confidence: Medium.

3.3.1.3 Reference sediment processes

Under natural conditions, catchment-derived sediments (mostly coarse grained sand) albeit in limited amounts would have been dispersed amongst the larger rocks in the upper reaches. The upper reaches would therefore have comprised a mixed rocky-sandy area versus the current rocky substrate.

As floods would have occurred significant more frequently, there would have been less frequent buildup of marine sediment in the lower reaches with a related increase in inter- and subtidal habitat.

Confidence: Low.

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1928	6.19	2.69	1.84	1.14	0.92	0.79	4.66	4.69	5.78	23.06	23.19	8.81
1929	3.42	2.13	1.58	1.18	1.37	1.41	1.40	1.59	2.44	4.45	10.40	27.01
1930	11.07	4.80	2.18	1.02	1.01	0.82	7.58	6.99	5.09	8.92	22.57	17.93
1931	12.68	5.45	2.09	1.39	2.46	1.61	1.11	8.27	12.20	17.30	10.74	16.64
1932	8.21	3.19	1.57	1.06	0.98	0.87	0.97	4.19	22.63	22.64	19.41	9.72
1933	5.38	2.97	1.27	0.83	1.00	0.94	0.86	4.48	6.63	7.21	15.09	16.62
1934	10.86	4.72	1.56	0.86	0.83	1.52	3.86	11.25	12.19	13.49	8.92	9.23
1935	4.92	4.37	2.20	3.10	2.08	1.50	1.44	8.38	8.07	13.46	14.85	11.38
1936	6.15	4.66	4.29	2.13	1.12	1.19	2.60	5.45	27.16	33.52	14.92	8.43
1937	0.03	3.20	1.44	1.24	1.12	1.10	4.40	1.12	0.13	0.21	11.50 14.45	17.82 0.0E
1930	0.52	2.06	1.74	1.06	2.37	2.30	0.05	0.32 8.27	10.12	13.07	6.75	0.00
1939	5 15	5.03	2 55	1.00	1.53	0.94	12 51	23.78	29.70	20.01	16.47	29.37
1941	14 00	4 66	2.00	1.60	1.00	0.89	1.56	10.00	31.55	15.76	14 20	7.66
1942	3.99	2.03	1.28	6.51	4.01	1.71	2.65	3.85	5.39	15.27	24.91	13.01
1943	5.94	3.96	1.83	1.10	0.97	0.87	1.41	10.17	42.29	23.01	24.90	21.96
1944	10.69	4.24	2.06	1.14	0.86	0.72	1.99	20.68	36.43	41.73	28.65	9.56
1945	8.22	5.21	1.89	1.07	0.94	2.28	2.60	3.16	4.73	7.74	14.86	17.19
1946	6.80	2.66	1.21	0.82	0.78	2.54	2.53	5.24	5.81	27.75	17.76	7.06
1947	4.27	2.67	1.37	0.90	0.88	1.45	1.88	4.40	7.50	15.19	10.11	16.93
1948	14.08	5.79	1.65	1.09	0.98	0.77	4.13	5.28	6.55	10.85	14.14	13.61
1949	6.32	4.73	2.34	1.16	0.91	0.73	7.19	4.03	2.38	23.41	11.35	15.79
1950	10.01	10.68	5.40	2.31	1.36	0.96	9.02	7.09	31.37	25.03	15.43	25.57
1951	11.98	5.57	2.38	1.02	0.86	1.21	1.53	6.12	5./1	13.25	22.35	16.14
1952	7.03	4.8/	2.36	1.09	0.94	0.79	2.45	15.96	10.26	16.92	14.84	0.5/
1903	4.19	3.72	1.98	1.04	0.90	1.03 5.01	3.40	24.08	23.99	30.// 21.26	30.00 35.90	14.84
1954	12.80	6.22	2 11	1.14	0.95	1.22	2.23	0.35	18.52	16.41	15.02	7 74
1956	5.64	3 20	1.61	1.05	2.20	2.24	2 47	23.14	32.01	29.58	26.16	13.64
1957	19.96	7.91	1.59	0.84	2.47	2.26	2.22	8.84	12.31	6.70	20.24	10.29
1958	5.44	3.48	1.55	1.07	1.00	1.06	15.39	34.08	15.69	7.96	20.25	11.19
1959	6.53	3.47	1.37	0.92	0.88	1.09	1.45	5.89	17.90	10.88	7.50	7.01
1960	4.47	2.29	1.77	3.92	2.31	0.94	1.05	3.10	7.59	11.09	20.40	15.23
1961	6.91	3.16	1.28	0.93	1.12	1.46	4.55	3.40	27.82	17.76	28.17	13.42
1962	16.60	7.78	2.01	1.49	1.20	0.88	1.13	3.14	9.70	26.17	30.57	12.25
1963	4.53	2.99	1.90	1.14	1.66	1.32	1.82	2.80	15.49	20.63	26.47	12.65
1964	9.64	6.96	2.79	1.17	1.78	2.43	4.25	8.55	7.95	11.31	13.35	7.25
1965	5.57	3.59	2.72	1.58	1.08	2.98	2.97	4.90	6.77	18.98	21.73	14.29
1966	5.55	2.35	1.16	0.84	0.81	0.97	13.33	8.77	17.50	16.92	12.69	7.28
1967	7.69	4.35	1.80	1.40	1.55	1.01	2.36	12.16	19.34	19.14	18.15	8.29
1908	9.13	4.33	1.74	1.71	1.09	1.32	2.55	2.10	16.04	8.30	22.74	12.09
1909	6.47	3.10	2.50	1.55	1.05	0.00	0.79	2.86	6.65	17.77	10 7/	0.03
1970	4 30	2.60	1 41	1.55	1.03	1 34	6.12	9 37	8 54	10.13	13.05	7.84
1972	4.02	2.06	1.40	1.06	0.89	0.77	0.96	2.33	2.87	17.07	12.99	12.79
1973	6.35	2.80	1.49	1.03	0.92	0.79	0.79	8.39	11.69	11.06	50.11	26.47
1974	14.84	5.98	1.84	1.24	1.07	0.80	1.72	11.80	11.76	26.44	23.82	9.23
1975	6.26	3.80	1.57	0.87	0.85	1.15	2.27	4.37	30.12	25.04	11.63	11.52
1976	6.36	12.24	7.72	2.62	1.94	1.91	4.98	21.70	33.23	32.92	30.99	14.53
1977	5.27	2.91	1.71	1.12	1.09	1.30	2.28	2.64	2.96	7.39	17.64	16.07
1978	9.80	4.63	2.30	1.84	4.18	3.23	1.14	12.11	18.07	12.92	11.38	10.85
1979	17.08	6.44	1.59	1.58	1.77	0.99	3.07	9.00	15.66	8.46	9.63	6.11
1980	5.17	10.54	7.34	10.86	4.72	2.78	5.31	4.45	4.82	21.20	23.63	24.69
1981	7.43 E 42	2.76	1.90	1.3/	1.05	0.86	5.89	5.1/	9.12	8.03	8.43	17.01
1702	0.4Z 8.22	2.01	5.10	0.00	4.45	3.71	1.71	10.92 07/01	27.07 1017	20.03	14.07 g.74	16.15
1984	13.90	5.24	5.56	3.42	2.24	7.37	7.09	4 25	10.14	24 17	20.53	9.22
1985	6.41	4.04	1.71	0.97	1.68	2.96	4.85	4.73	13.41	17.60	35.67	16.24
1986	4.55	3.39	1.46	1.25	1.60	1.11	3.64	12.89	18.32	14.20	18.91	12.93
1987	5.38	1.78	3.04	0.93	0.56	1.00	3.90	6.90	13.23	16.95	10.02	15.03
1988	4.66	3.85	0.82	0.48	0.53	6.03	12.19	11.66	17.91	18.41	21.23	22.34
1989	11.51	7.13	2.00	1.01	1.81	1.54	8.06	17.58	20.96	27.67	17.79	6.49
1990	2.87	2.70	1.57	0.69	0.64	0.11	0.92	10.33	21.29	28.42	16.49	15.97
1991	9.36	6.18	1.65	0.60	0.93	0.79	5.51	12.73	38.39	22.87	14.41	12.69
1992	17.53	7.50	1.79	0.83	1.13	0.80	24.57	12.00	22.89	46.92	16.17	3.92
1993	2.39	1.42	2.28	0.59	0.68	0.72	1.60	5.01	39.07	20.05	9.66	5.51
1994	5.03	2.01	1.28	0.86	0.67	0.43	1.54	9.46	13.98	24.03	19.22	6.29
1995	13.58	5.10 12.25	8.78 0 0 0	2.80	1.10	1.23	1.53	2.94 0.4F	22.10	20.05	12.78	18.03 E 96
1990	23.24	8.66	0.02	2.02	0.05	0.01	2.19	0.00	23.00	17.80	10.60	1 74
1997	2.00	0.00	4.59	2.05	0.95	0.90	1.10	23.70 1.51	10.01	11.00	10.00	4.74
1999	5.65	2.31	1 11	1.33	0.56	1.75	1.07	4.51	10.86	17.52	12.38	21.01
2000	5.83	2.43	1.22	0.85	1.08	0.52	0.93	14.43	8.12	36.38	26.73	22.72
2001	6.44	3.41	1.51	5.47	2.45	0.82	1.95	6.12	15.92	22.88	19.22	6.49
2002	6.49	3.67	1.58	1.07	0.93	3.86	2.40	5.13	4.79	4.26	19.57	13.87
2003	6.97	3.26	1.81	1.53	0.88	0.83	1.25	2.11	6.68	12.39	15.02	6.89
2004	12.89	4.86	1.57	1.20	0.93	0.60	12.74	11.27	24.62	12.28	23.09	9.61
State 1	<0.15	State 2	0.15-1	State 3	1-10	State 4	10 - 20	State 5	> 20			

Table 3.10 Simulated monthly	flows to the Palmiet Estuar	y for the Reference Condition (m ³ s ⁻¹)
------------------------------	-----------------------------	---------------------------------	----------------------------------

Figure 3.4 Graphic representations of the occurrence of the abiotic states under the Reference Condition

3.3.1.4 Droughts

Hydrological drought conditions in the Palmiet Estuary are defined as years in which the annual inflow (million m³) falls below the Reference Condition 10%ile, i.e. 175 million m³. Figure 3.5 shows that this condition never occurred for more than a year at a time.

Figure 3.5 Drought conditions in the Palmiet Estuary under the Reference Condition

3.3.2 Biotic Components

3.3.2.1 Change in biotic characteristics from the Reference Condition to the Present State

MICROALGAE

The largest changes from the reference to present state have been the 36.1% decrease in river flow and the 45% decrease in pulses/floods exceeding 50 m³ s⁻¹. Dams in the catchment trap sediment being transported from the catchment, preventing the infilling of rocky areas in the upper reaches.

Based on the simulated 76 year reference and present flow records (Tables 3.6 and 3.10), there has been a distinct shift in the chance (%) that any particular state will occur in any given year;

State 1: Ref = 1.3%; present = 7.7% State 2: Ref = 66.6%; present = 100% State 3: Ref = 100%; present = 100% State 4: Ref = 94.9%; present = 78.2% State 5: Ref = 61.5%; present = 33.4%

As river flow has decreased, there has been a decrease in the occurrence of States 4 and 5 and an increase in States 1 and 2. It is important to note that the mouth only closed once in the reference condition simulated flows (Table 3.9), and this increased to six times in 77 years (Table 3.3).

Phytoplankton

River water flowing into the estuary would have been low in nutrients, resulting in the estuary being oligotrophic and microalgal biomass low ($<5 \ \mu g \ L^{-1}$) due to nutrient limited growth. In addition, there was no small dam behind the gauging weir acting as a source of phytoplankton to the estuary. It is unlikely there was specific group dominating the phytoplankton, but there would have been a broad suite of small-celled phytoplankton, probably made up of diatoms, chlorophytes, dinoflagellates and flagellates; the majority imported in the river water. It is unlikely that cyanophytes would have been present for any significant length of time (States 1 and 2).

Benthic microalgae

The mouth of the estuary would have opened more frequently and for longer periods in the reference state,

supporting a higher biomass of intertidal benthic microalgae on the sand flat located on the west side of the lower reaches. However, floods occurred more frequently and with higher intensity, which would have mobilised large loads of sediment and effectively 'reset' the estuary; floods with flows in excess of 500 m³ s⁻¹ would have occurred more frequently and are likely to have scoured away the entire sand flat. Microalgal cells would have been almost entirely dependent on remineralised nutrients from imported organic matter and from the local sand prawn population. Biomass would have been highest above the mid-tide mark in the intertidal zone, but the oligotrophic conditions would have kept the biomass lower than present.

Confidence: Medium

MACROPHYTES

The reduction in flooding and extended drought periods would result in stagnant water conditions and an increase in macroalgal growth (e.g. *Cladophora* spp). This is a problem, as decomposition of the organic load leads to anoxic conditions. The increase in the duration of semi-closed mouth conditions would increase macroalgal growth. Higher water levels and closed mouth conditions would result in inundation and die-back of the small area of salt marsh. This reduction in river flow would reduce allochthonous inputs from the river. As a result of this and the increase in semi-closed mouth conditions, the estuary would be cut off from the two main sources that maintain its functional state, i.e. freshwater input and tidal exchange.

Confidence: Medium

INVERTEBRATES

Zooplankton

It is unlikely that the zooplankton has ever played an important role in the functioning of the Palmiet Estuary. Under the reference condition, variability in biomass and species would have been greater, but because of their already low numbers/biomass, changes are minimal.

Zoobenthos

Biomass of the sandprawn *Callianassa kraussi* was probably lower under natural conditions, due to the greater magnitude of larger floods (25% higher) and the greater frequency of intermediate and large floods (55%). Sediment particle size would also have been coarser, leading to less dense populations (indicated by the current trend of increasing particle size upstream). Under the reference condition, larger areas of the substrate was also made up of hard rock in the upper reaches, while the intertidal sandbank at the mouth would have been smaller because of the greater frequency of erosion (reduced time to accumulated between floods)

Hyperbenthos

Unknown, but it is likely that species such as *Palaemon capensis* was more common under natural conditions (currently, its habitat is restricted by the weir above the road bridge). It is also possible that *Macrobrachium* sp. was also more common under the natural state for the same reason, but its geographical distribution westwards, as currently recorded, extends as far as the Breede Estuary. Formal documentation indicates the Gamtoos Estuary as the western boundary.

Confidence: Medium

FISH

The fish assemblage is unlikely to have changed much from reference conditions. The frequency of occurrence of state 2 conditions would have been sufficient for low oxygen conditions to exclude benthic species from most of the deeper parts of the estuary. Similarly, benthic microalgae biomass may have been higher under reference, favouring the *Mugillidae*, but more frequent flood scouring would have limited these opportunities. An increase in macroalgal biomass since reference may have seen an increase in low oxygen levels through night time respiration and decomposition. Zooplankton levels were and remain low. The fact that zooplankton are at low numbers and the main diet of new recruits into the estuary, may explain the low levels of species such as *L. lithognathus* and *R. holubi. Callianassa kraussi* have increased in numbers from reference, but their availability as prey for fish is still likely to be governed by the relationships between freshwater flow and burrow quantity and depth.

Confidence: Low

BIRDS

The estuary is depauperate in terms of avifauna, and probably always has been, due to its coarse substrate, lack of habitat diversity, and lack of food availability. Indications are that these factors have not changed significantly relative to the Reference State. The main change is that increased closed or semiclosed conditions will have made the system slightly less attractive to waders, gulls and terns, and more attractive to wading birds and waterfowl. The system has probably always served as a roost site for gulls and terns, but this function may be impacted by human disturbance during peak summer periods. At the same time, numbers of gulls may have increased somewhat due to regional increases in their populations. Thus it is probably reasonable to assume that there have not been any major changes in abundance or community structure, other than those that might have occurred through non-flow related changes (regional population, human disturbance).

Confidence: Medium

3.4 PRESENT ECOLOGICAL STATUS OF THE PALMIET ESTUARY

3.4.1 Abiotic Components

3.4.1.1 Hydrology

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
a.% Similarity in period of low flows OR present MAR as a % of MAR in the reference condition	74	For the Palmiet Estuary low flows are defined as months in which river inflow to the estuary is $< 1.0 \text{ m}^3 \text{s}^{-1}$ i.e. flows representative of State 1 (closed mouth) and State 2 (semi-closed). Months with flows of less than 1.0 m ³ /s occurred under the reference condition for 10.5% (~1 month) of the year for the simulated period. Under the present state low flows now occur for 36.4% (~4.5 months) of the year. Formula: (100 – (% Reference -% Present)) DWAF (2004)	High
b.% Similarity in mean annual frequency of floods	55	As Palmiet Estuary is a relatively small estuary, comparatively small floods would be able to reset its sediment processes, but the frequency at which these events occur is of great importance, as this drives the rate at which the deposition/erosion cycle in the system occur. The flood analysis of the daily flow data indicates that there is about a 55% reduction in the occurrence of large and intermediate floods to the Palmiet Estuary from Reference Condition, while simulated average monthly flow data indicate a 24% reduction in the magnitude of larger floods. <i>Formula: % Change in occurrence (2/3) +% Change in magnitude (1/3)</i>	Medium
¹ Hydrology score	67		

3.4.1.2 Hydrodynamics and mouth condition

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
Change in mean duration of		Extended periods of mouth closure (State 1) only occurred for very short periods of the time (0.1%) under the Reference Condition, and increased slightly to 0.8% of the time under the present state.	
closure, e.g. over a 5 or 10 year period	46	While State 2 (semi-closed) increased by 25.2% from the Reference Condition to the Present State.	High
		Following the scoring guidelines provided in DWAF (2004) allocate a score of 46% (Note: the Reserve method scores mouth closure conservatively).	
Hydrodynamics and mouth conditions score	46		

¹ Hydrology score is the weighted mean of a (60%) and b (40%).

3.4.1.3 Water quality

The change in salinity was calculated based on two conditions, change in the average salinity and change in the structure of the Palmiet.

Change in the average salinity was calculated as the average salinity per state for a zone (lower surface, upper surface, lower bottom and upper bottom) multiplied by the % occurrence of the state. There was an average decrease in salinity of about 3.5%, with the most significant change observed in the bottom water of the lower reaches, which went from 28 ppt to 21 ppt. There was relative little change in the salinity of the surface water in the estuary.

	bottom water	or ur		reaches	, wrnei	i went	110111 2	-0 ppi ii	
				Avera	age sal	linity (ppt)		
		St	Re	eference	•	F	resen	t	Average salinity for 4 sections representing the lower (0-800
			%	L	U	%	L	U	m) and upper (800 – 1 800 m) estuary (moving upstream from
		1	0.1	15	15	0.8	5	5	bottom (water depth > 1.5 m) waters
Salinity			•••	30	30	0.0	5	15	
		2	10.4	20	25	35.6	5 5	5 10	Reference Conditions: Present State:
		3	58.7	20 35	15 30	46.4	20 35	15 30	13 10 11 9
		4	20.6	0 25	0 10	12.4	0 25	0 10	28 22
		5	10.3	0 0	0 0	4.8	0 0	0	
	Change in str	uctu Inditi	re was on, to 5	calculate	ed on t er the F	he loss Presen	s of St t State	ate 3 a <u>e, i.e. 20</u>	which represents the highly stratified states. State 3 and 4 decreased from 79% under the ange.
DIN	 DIN concentra anthropogenic (~100 µg.I⁻¹) of Considering th During St compared During St During St Reduction waters of To score simil Estuary h Estuary h For a par For a spe Fractiono 	ation c inp due the al tate d to l tates tates n in tates n in tates n in tates n as n as n ticula ecific	s in riv puts fro to agri- pove, d 4 (occu Referer 5 (occu 1 and 1 and the occ lower e to Refe bolume) o abiotic ar flow so <i>%S1Vc</i>	er inflow or agricu cultural i eviation f urring in v ace rring in v 2 (occurr currence stuary. erence the onditions ed into n c states (ccenario cenario the olzi + %S2	$\frac{1}{2} \frac{1}{2} \frac{1}$	C_n), each C_n , each C_n	$\frac{\mathbf{r}}{\mathbf{r}}$ (i.e. concent asiona erence oncentr er) DIN ccurrin gloigo <i>Z_n</i>), e. n with a cc, Pr curren	ch was bothropic g. lowe a speci cesent, ce of a	Any e. A and 5.) increased markedly from Reference (<50 μg.Γ ¹) to Present (>500 μg.Γ ¹) due t ver inflow during <u>summer</u> increased somewhat from Reference (<50 μg.Γ ¹) to Preser 200-300 μg.Γ ¹) from the sea (upwelling) is most significant during State 3 in <u>summer</u> imilar situation assumed for Scenarios) occurs as follows: ignificantly higher in surface waters of the estuary and bottom waters of the upper estuar inficantly higher in the entire estuary compared to Reference ns are somewhat higher in the surface waters of the estuary compared to Reference i from Reference reduced DIN concentrations in bottom waters of the estuary and surfac ed: μ g.Γ ¹), mesotrophic (50-300 µg.Γ ¹) and eutrophic (>300µg.Γ ¹) ace, lower bottom, upper surface, upper bottom (assume zones are of equal volume, eac I condition (<i>C</i> ₁ to <i>C</i> _n) occurring in a specific zone (<i>Z</i> ₁ to <i>Z</i> _n) (see Table 3.2) ach abiotic state (<i>S</i> ₁ to <i>S</i> _n) has a specific <i>S</i> occurrence (<i>%S</i> ₁ to <i>%S</i> _n) <i>ic DIN Condition (Ci) in a specific zone (Zi)</i> is determined by: <i>idering only S</i> ₁ to <i>S</i> _n <i>in which C_i occurs Zi</i>)

	 Similarity of DIN in Present or any Scenarios relative to Reference is then calculated as follows:
	Similarity mu = 5 min(Fractioncizi in Ref. Fractioncizi in Present/Scenario)
DIP	 DIP concentrations in river inflow during <u>winter</u> (i.e. during States 4 and 5.) increased somewhat from Reference (<10 µg.I⁻¹) to Present (10-50 µg.I⁻¹) due to anthropogenic inputs from agriculture. Occasional DIP input (10-50 µg.I⁻¹) from the sea (upwelling) is most significant during State 3 in <u>summer</u>. Considering the above, deviation from the Reference to Present (similar situation assumed for Scenarios) occurs as follows: During State 4 (occurring in winter) DIP concentrations are somewhat higher in surface waters of the estuary and bottom waters of the upper estuary compared to Reference During State 5 (occurring in winter) DIP concentrations are somewhat higher in the entire estuary compared to Reference Reduction in the occurrence of State 3 (occurring in summer) from Reference reduced DIP concentrations in bottom waters of the estuary and surface waters of the lower estuary. To score similarity to Reference, the following approach was followed: Estuary has <i>n</i> DIP conditions (<i>C₁ to C_n</i>), e.g. oligothropic (<10 µg.I⁻¹), mesotrophic (10-50 µg.I⁻¹) and eutrophic (>50µg.I⁻¹) Estuary is sub-divided into <i>n</i> zones (<i>Z₁ to Z_n</i>), e.g. lower surface, lower bottom, upper surface, upper bottom (assume zones are of equal volume, each <u>25% of total volume</u>) Estuary has <i>n</i> abiotic states (<i>S₁ to S_n</i>) each with a specific DIP condition (<i>C₁ to C_n</i>) has a specific zone (<i>Z₁ to Z_n</i>) (see Table 3.2) For a particular flow scenario (he fraction occurrence of a specific DIP Condition (<i>Ci</i>) in a specific zone (<i>Zi</i>) is determined by: <i>Fraction_{CLZI}</i> = %<i>S₁Vol_{Z1}</i> + %<i>S₂Vol_{Z1}</i> +, %<i>S_nVol_{Z1}</i> (considering only <i>S₁ to S_n</i>) in which <i>C_i occurs Z_i</i> Similarity of DIP in Present or any Scenarios relative to Reference is then calculated as follows:
	Similarity $_{P} = \sum \min(Fraction_{Ci,Zi in Ref}, Fraction_{Ci,Zi in Present/Scenario})$
DIN/DIP	Overall nutrient score = Average [Similarity _{DIN} , Similarity _{DIP}]
	Palmiet is a black water system, i.e. water is clear but contains dissolved humic acids. Transparency between different states is not considered significantly different (~ 2 m), except during State 3, when strong marine influence increases visibility in bottom waters of both sections and surface waters of lower estuary (i.e. 3 sections out of 4). Reduction in occurrence of State 3 from Reference Condition reduced transparency in these sections.
Transparency	 Estuary has <i>n</i> Transparency Conditions (<i>C</i>₁ to <i>C_n</i>), e.g. low (<1 m Secchi depth), medium (1-2 m) and high (>2 m) Estuary is sub-divided into <i>n</i> zones (<i>Z</i>₁ to <i>Z_n</i>), e.g. lower surface, lower bottom, upper surface, upper bottom (assume zones are of equal volume, each 25% of total volume)
	• Estuary has <i>n</i> abiotic states (S_1 to S_n) each with a specific Transparency Condition (C_1 to C_n) occurring in a specific zone (Z_1 to Z_n) (see Table 3.2) • For a particular flow scenario (α , Reference, Present etc.) each abiatic state (S_1 to S_2) has a specific N ecurrence ($N \leq T > N$)
	 For a particular now scenario (e.g. Reference, Present, etc.) each about state (S₁ to S_n) has a specific %occurrence (%S₁ to %S_n) For a specific flow scenario the fraction occurrence of a specific Transparency Condition (Ci) in a specific zone (Zi) is determined by:
	Fraction _{Ci,Zi} = $\%$ S ₁ Vol _{Zi +} $\%$ S ₂ Vol _{Zi +} + $\%$ S _n Vol _{Zi} (considering only S ₁ to S _n in which C _i occurs Z _i)

	Palmiet is typically oxygenated (>6 mg.l ⁻¹), except during States 1 and 2, when DO in the bottom water of estuary can be reduced markedly (2-6 mg.l ⁻¹ , even <2 mg.l ⁻¹). An increase in occurrence of States 1 and 2 from Reference would therefore generally result in reduced DO in bottom waters. However, in instances where State 2 persists for longer than 2 months, entrainment of freshwater into bottom layers, partial re-aeration of bottom waters could occur.								
DO	• Estuary has <i>n</i> Oxygen conditions (C_1 to C_n), e.g. low (<2 mg.l ⁻¹), medium (2-6 mg.l ⁻¹) and high (>6 mg.l ⁻¹)								
	• Estuary is sub-divided into <i>n</i> zones (<i>Z</i> ₁ to <i>Z</i> _n), e.g. lower surface, lower bottom, upper surface, upper bottom (assume zones are of equal volume, each 25% of total volume)								
	• Estuary has n abiotic states (S_1 to S_2) each with a specific Oxygen condition (G_1 to G_2) occurring in a specific zone (Z_2 to Z_2) (see Table 3.2)								
	• For a particular flow scenario (a d. Reference Present etc.) each abiotic state (S. K. S.) has a specific %occurrence (%S. to %S.)								
	• Tot a particular now scenario (e.g. reference, resent, etc.) each about state (37 to 37) has a specific viocumente (viol to vion)								
	• For a specific flow scenario the fraction occurrence of a specific Oxygen Condition (Ci) in a specific zone (Zi) is determined by:								
	Fraction _{Ci,Zi} = $\%S_1$ Vol _{Zi} + $\%S_2$ Vol _{Zi} +								
Toxic substances	Although there are large urban developments in close proximity of the estuary, agricultural activities in the catchment have probably contributed to pesticide/herbicide contamination in the estuary, considering the strong nutrient signal from this anthropogenic source. Assume similarity to Reference as 90% for Present and all Scenarios								

Scenario	1. Changes in longitudinal salinity gradient and vertical stratification		2a.	DIN/DIP in estuary	2b. SS/Turbidity/ Transparency in estuary2c. DO in estuary2d. Toxic substance estuary		c substances in estuary	Overall score			
	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change	
Present	76 M/H	20% ∜stratified 4% ∜Salinity	74 M/H	 ♣ Summer (bottom) ✿ Summer (surface) ✿ Winter (overall) 	91 M/H	 Usurface and bottom, upper estuary) 	85 M/H	↓ Summer (bottom)	90 L	ûOverall accumulation	75

3.4.1.4 Physical habitat alteration

	VARIABLE	SCORE	MOTIVATION	CONFIDENCE
1.	Resemblance of intertidal sedin	nent structur	e and distribution to reference condition	
1 a	% Similarity in intertidal area exposed	70	Allow 20% change in the intertidal area due to changes in mouth regime (increase in State 2). In addition 10% is allocated for progressive infilling in the mouth and middle reaches due to a reduction in the frequency and magnitude of floods.	Low
1 b	% Similarity in sand fraction relative to total sand and mud	95	Coarsening of sediment in estuary due to sediment "starvation" caused by dam trapping fluvial sediments and a related increase in marine sediment (5%).	Low

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
2 Resemblance of subtidal estuary to reference condition: depth, bed or channel morphology	70	Subtidal: 50% decrease in the mouth area and middle reaches, $\hat{1}1\%$ deepening in upper estuary due to trapping of catchment sediment. Allow 50% change in the subtidal area in the middle and lower reaches reduce flushing.	Low
Anthropogenic influence:			
Percentage of overall change in <u>intertidal and</u> <u>supratidal habitat</u> caused by anthropogenic activity as opposed to modifications to water flow into estuary	10	Retaining wall built on supratidal area of picnic area at the mouth	Low
Percentage of overall change in sub <u>tidal habitat</u> caused by anthropogenic modifications (e.g. bridges, weirs, bulkheads, training walls, jetties, marinas) rather than modifications to water flow into estuary	0	All flow related	Low
Physical habitat score	78		

3.4.2 Biotic Component

3.4.2.1 Microalgae

VARIABLE	SCORE	MOTIVATION	CONFIDENCE		
Phytoplankton					
1. Species richness	100 (100%)	The estuary is likely to experience the full range of states that occurred in the reference condition. It is unlikely that there has been any loss of species.	L		
2a. Abundance	92	Biomass, measured using chl <i>a</i> , has increased because of elevated nutrients (↑ : 38% increase), but decreased due to more frequent mouth closures (↓ : 26% increase in States 1 and 2) and less pronounced stratification (↓ : 20% decrease in States 3 and 4). An overall 8% decrease in biomass.	М		
2b. Community composition	74	A decrease in stratified conditions (States 3 and 4) to more closed conditions (States 1 and 2) is likely to support a shift from relatively large flagellates/dinoflagellates to one with a higher proportion of small flagellates and cyanophytes. Expect a 26% change.	М		
Benthic microalgae					
1. Species richness	100	The estuary is likely to experience the full range of states that occurred in the reference condition. It is unlikely that there has been any loss of species.	L		

2a. Abundance	74	Subtidal chl <i>a</i> : An increase in biomass in response to an increase in available habitat (increase in States 1 and 2) is likely to be negated by a decrease associated with reduced light availability and direct competition for resources with macroalgae. Intertidal chl <i>a</i> : Reduced high flows (\uparrow 14%: 20.6 – 12.4 and 10.3 – 4.8) and elevated nutrients (\uparrow : 38% x 0.5) favour an increase in benthic chl-a. Loss of intertidal habitat (\downarrow 26% x 0.5) and a loss of water transparency during State 3 (\downarrow 12.3% x 0.5): Overall increase in benthic microalgal biomass of 26%. (<i>note that vector arrow denotes chl-a response</i>)	М
2b. Community composition	74	The increased flooding of the intertidal sediment during States 1 and 2 (26% change) is likely to see a shift in composition from more mobile species (e.g. pennate diatoms and euglenophytes) to attached taxa.	М
Microalgae score	74		

3.4.2.2 Macrophytes

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
1. Species richness	80 (90%)	Potential loss of salt tolerant salt marsh species due to a decrease in salinity.	L
2a. Abundance/Biomass	45	<i>Macroalgae</i> : During the reference condition, the mouth was closed/semi-closed for 1.26 months and this has increased to 4.37 months at present. <i>Macrophytes</i> : In contrast, the mouth was open for 10.7 months and has decreased to 7.6 months. Saltmarsh (~0.1 ha) is negatively affected by inundation so there has been a change from 1.07 ha-months to 0.76 ha-months in saltmarsh from reference to present. This represents a 55% change [100 - (1/ (5.13/2.33))] from the Reference Condition; 2.33 ha-months [1.26 + 1.07] at Reference to 5.13 ha-months [4.37 + 0.76] at present.	Μ
2b. Community composition	69	Macroalgae would increase where there was open water and salt marsh dies back due to inundation during States 1 and 2. The ratio of macroalgae to macrophytes changed from 1.26:1.07 to 4.37:0.76 from Reference to Present representing a 69% change in community composition.	Μ
Macrophytes score	45		

3.4.2.3 Invertebrates

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
Zooplankton			
1. Species richness	100	No change in species richness	М
2a. Abundance	90	Marginal increase (10%) under present conditions because of less frequent flushing.	М
2b. Community composition	100	No change in species composition	М

Macroinvertebrates (Benthos)					
1. Species richness	100	No change in species richness	М		
2a. Abundance	65	The intertidal area in the lower estuary has increased by approximately 10% in the area covered under present conditions (magnitude and frequency of floods decreased), while sandy sediment has extended upstream, although the area affected relative to the estuary is low. Occasionally, the development of anoxic conditions would cause some mortality of benthic organisms that would not have occurred naturally. Because of the increase in macroalgal cover, a greater quantity of detritus becomes available to benthic consumers (40%). This greater amount would be offset by the greater amount of kelp material brought into the estuary under natural conditions. On balance, a 35% increase in benthic biomass predicted on average (Macrophyte coverage more permanent, sandy sediment extends further upstream and an increase in organic material available to detritivores.	L		
2b. Community composition	65	Because of the increase in the intertidal area and greater amount of detritus (increased submerged macrophyte cover), the relative importance of species in the community will change.	L		
Macrocrustacea (Hyperbenth	ios)				
1. Species richness	100	No change in species richness	М		
2a. Abundance	100	Not related to flow	Μ		
2b. Community composition	100	Not related to flow	М		
Invertebrates score	65				

3.4.2.4 Fish

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
1. Species richness	80 (90%)	3 Introduced freshwater species at the head of the estuary, but largely confined to the freshwater reaches. However, both <i>Micropterus</i> spp. can have devastating effects on glass eels and elvers recruiting through the estuary into the freshwater reaches.	Μ

3.4.2.5 Birds

VARIABLE	SCORE	MOTIVATION	CONFIDENCE
1. Species richness	100 (100%)		
2a. Abundance	81	 There has been an increase in invertebrate abundance, but no significant change in fish. The 10% increase in intertidal habitat is not of much consequence. Gull populations may have increased as a result of general increases in population numbers, but in general, the estuary is less attractive to gulls, terns and waders because of the increase in closed/semi-closed conditions. There will also have been increases in human disturbance, especially in peak summer months. Overall numbers decrease by an estimated 19%. Invertebrate feeders 1%↓ Gulls and terns 21%↓ Other piscivores no change 	L
2b. Community composition	100	Numbers of different groups are small and likely to fluctuate greatly, making this kind of impact difficult to assess. In general, because the system is closed more often, one might expect shifts towards more wading birds under those conditions. However, even these would be incidental because of the low productivity of the system. Because of the dominance of gulls and terns (94% of birds) which are least impacted by flow-related changes, overall, impacts on community structure will be negligible.	L
Bird score	81		

To establish the changes in present state (compared with reference conditions) that are not as a result of changes in flow, but rather as a result of other anthropogenic activities, the Table below indicates the percentage of overall change predicted in particular components that are non-flow related.

COMPONENT	% CHANGE CAUSED BY NON- FLOW RELATED ACTIVITIES	MOTIVATION	CONFIDENCE
Water Quality	80	Significant change as a result of anthropogenic inputs from agriculture (DIN and Toxic substances)	Medium
Microalgae	20	Elevated nutrients increase biomass slightly (10%) and the gauging weir above the estuary provides an area of higher residence time affecting biomass and community composition entering the estuary.	Medium
Macrophytes	10	Increase in nutrients would increase macroalgal abundance. However, only 10% change as nutrients mainly introduced during high flow, open mouth condition.	Medium
Invertebrates	100	Presence of the weir above the road bridge would terminate migration between the river and estuary,	Medium
Fish	20	Weir hinders the upstream migration of catadromous <i>A. mossambica</i> elvers and completely blocks the passage of <i>Monodactylus falciformis, Myxus capensis</i> and <i>Mugil cephalus</i> into the freshwater reaches. Abundance of exploited fish species also a function of their nationwide stock status	Medium
Birds	50	Some of the change in numbers is attributed to human disturbance and changes in regional bird populations.	Low

3.4.3 Present Ecological Status (PES)

The individual scores for each of the components (i.e. overall score listed) are incorporated into a Habitat health score and a Biological health score. This allows for the determination of the Estuarine Health Index (EHI) Score as illustrated in Table 3.11.

 Table 3.11 Estuarine Health Index (EHI) scores

Variable	Weight	Score	Weighted score
Hydrology	25	67	17
Hydrodynamics and mouth condition	25	46	12
Water quality	25	74.8	19
Physical habitat alteration	25	78	19
Habitat Health Score			66
Microalgae	20	74	15
Macrophytes	20	45	9
Invertebrates	20	60	12
Fish	20	80	16
Birds	20	81	16
Biological Health Score			68
Estuarine Health Index Score 67			67

The Estuarine Health Index score for the Palmiet Estuary, based on its present state, is **67**, translating into a **Present Ecological Status** of a **C** (see Table 3.12). Major drivers of change in the system were a significant reduction in river inflow (floods and baseflows), increased mouth closure; reduced sediment scouring and an increased nutrient load from the catchment. Of special concern were the occurrence of macrophytes blooms in the estuary as a result of increase nutrients, reduced baseflow and closed (or semi-closed) mouth conditions. Die-off of these macrophyte blooms causes hypoxic or anoxic conditions in the estuary, which in turn puts the rest of the ecosystem under stress. An additional concern was the long periods of artificial droughts the estuary was currently experiencing, and the impact this would have on fish recruitment.

Table 3.12 Guidelines for the Present Ecological State	us
--	----

Estuarine Health Index Score	Present Ecological Status	General description
91 – 100	Α	Unmodified, natural
76 – 90	В	Largely natural with few modifications
61 – 75	С	Moderately modified
41 - 60	D	Largely modified
21 - 40	E	Highly degraded
0 - 20	F	Extremely degraded

4 RECOMMENDED ECOLOGICAL CATEGORY FOR THE PALMIET ESTUARY

The **Biodiversity Importance** score of the Palmiet Estuary on a national scale is calculated as **71** (Table 4.1; Turpie 2004).

Table 4.1 Biodiversity Importance Scores

Criterion	Weight	Score
Plants	30	80
Invertebrates	10	80
Fish	30	40
Birds	30	60
Weighted mean		62
Maximum		80
Score = (mean + max)/2		71

The **Functional Importance** of the Palmiet Estuary on a regional scale is estimated to be **50**, since the estuary is an important movement corridor between the river and the sea for invertebrates and fish, especially eels (Table 4.2).

Table 4.2 Functional Importance Scores

Functional Importance	Score
(a) Export of organic material generated in the estuary (regional scale)	20
(b) Nursery function for fish and crustaceans (marine/riverine)	45
(c) Movement corridor for river invertebrates and fish breeding in sea	50
(d) Roosting area for marine or coastal birds	20
(e) Catchment detritus, nutrients and sediments to sea	20
Functional importance score [Maximum score of (a) to (e)]	50

The **Estuarine Importance Scores** (EIS) allocated to the Palmiet Estuary are given in Table 4.3 (Turpie and Clark 2007).

Table 4.3 Estuarine Importance Scores

Criterion	Weight	Score	Weighted score
Size	15	70	11
Zonal Type Rarity	10	20	2
Habitat diversity	25	60	15
Biodiversity Importance	25	71	18
Functional Importance	25	50	13
Estuarine Importance Score (Score Rounded)			58

The overall EIS for the Palmiet Estuary, based on its present state, is 58, signifying that the estuary is of **average importance** as in Table 4.4.

Table 4.4 Estuarine Importance description

Importance Score	Description
81 – 100	Highly important
61 – 80	Important
0 - 60	Of low to average importance

The recommended Ecological Reserve Category (ERC) represents the proposed level of protection assigned to an estuary and is used to determine the recommended EWR for the estuary.

The relationship between EHI Score, PES and ERC is set out in Table 4.5.

 Table 4.5
 Ecological Reserve Category

Estuarine Health Index Score	Present Ecological Status	Description	Ecological Reserve Category
91 – 100	A	Unmodified, natural	A
76 – 90	В	Largely natural with few modifications	В
61 – 75	С	Moderately modified	С
41 - 60	D	Largely modified	D
21 – 40	E	Highly degraded	-
0-20	F	Extremely degraded	-

Note: Should the Present Status category of an estuary be either an E or F, recommendations must be made as to how the status can be elevated to at least achieve a Category D (as indicated above).

The degree to which the Ecological Category needs to be elevated above the Present Ecological Status depends on the level of **importance** and the level of **protection** or **desired protection** of a particular estuary (see Table 4.6).

Table 4.6	Guidelines for the	Recommended	Ecological	Reserve Category
-----------	--------------------	-------------	------------	-------------------------

Current/desired protection status and estuary importance	Recommended Ecological Reserve Category	Policy basis	
Protected area		Protected and desired protected	
Desired Protected Area	A or BAS*	areas should be restored to and maintained in the best possible state of health	
Highly important	PES + 1, min B	Highly important estuaries should be in an A or B category	
Important	PES + 1, min C	Important estuaries should be in an A, B or C category	
Of low to average importance	PES, min D	The remaining estuaries can be allowed to remain in a D category	

* BAS = Best Attainable State

Note that the Palmiet Estuary abuts the Kogelberg Biosphere and as part of the development of a regional conservation plan for the cool and warm temperate estuaries, Turpie and Clarke (2007)

recommended that the Palmiet Estuary be included in the core set of estuaries that need to be protected to meet biodiversity targets in South Africa. The conservation plan stipulates that 50% of the terrestrial marginal area be included as a no-development area, and that the Recommended Ecological Water Requirement Category be an A or B.

This study concluded that the **major pressures** currently contributing to the degraded health of the Palmiet Estuary are **poor water quality** and **reduction in river inflow in summer**. These impacts can be mitigated with very little effort. Therefore, based on the recommended health status for a protected area and the ease with which this can be achieve for the Palmiet Estuary, the **REC for the Palmiet Estuary is a Category B.**

5 QUANTIFICATION OF ECOLOGICAL RESERVE SCENARIOS

5.1 DESCRIPTION OF THE SCENARIOS

Aurecon Consulting Engineers provided simulated hydrological data for the Reference Conditions, Present State and Scenarios 1 to 4 (see Table 5.1). Scenario 5 represents similar flow conditions as the Present State, but with a 66% reduction in the nutrient input from the catchment. And was used to assess whether and to what extent the health of the Palmiet Estuary could be elevated through the management of water quality parameters. Scenario 6 was generated during the workshop to test the sensitivity of the Palmiet Estuary to increase base flows. It assumes that base flows cannot be suppressed for longer than three months at a time in summer as this will allow for excessive algae growth and associated anoxic or hypoxic conditions (low oxygen levels) to develop in the estuary.

Table 5.1	Runoff scenarios evaluated as part of the Rapid Palmiet Estuary Flow requirement
	study

Scenario name	MAR (million m ³)	% Remaining	Scenario #	Description
Reference Condition	256.3	100	Natural	Natural
Present State	163.7	63.9	1d4a	Present
Scenario 1	185.2	72.2	1d	Minimum Degradation - Campanula Dam (was the Present State 5 years ago)
Scenario 2	161.3	62.9	1d4as	Different pump rates
Scenario 3	148.7	58.0	Oifrs	No IFR releases and Lower Steenbras raised
Scenario 4	111.18	43.4	0sc	Lower Steenbras raised, Campanula Dam and no IFR releases
Scenario 5	163.7	63.9	1d4a	Similar to Present State, with a 66% reduction in nutrient input from the catchment
Scenario 6	161.3	62.9	-	Similar to Scenario 2, but elevate base flows, with flows <1.0 m ³ s ⁻¹ occurring for 22 % of the time, i.e. flows not less than 1.0 m ³ s ⁻¹ for longer than 3 months in a year.

Exceedance curves (Figure 5.1 and Figure 5.2) drawn with normal and logarithmic scales, based on simulated daily data for the Reference Condition, Present State and Scenarios 1 to 4, provide a clear indication of the reduction in daily inflows to the Palmiet Estuary. What is also clear from this analysis is that all flow ranges, from the high flows to the base flows, are systematically reduced under the various development options. Scenario 5 is similar in flow distribution to Present Sate. Simulated daily flow data were not available for Scenario 6 as it was generated at the workshop.

5.2 ABIOTIC COMPONENTS

5.2.1 Variability in river inflow

The flow distributions (mean monthly flows in m^3s^{-1}) under the various Scenarios of the Palmiet Estuary, derived from a 77-year simulated data set, is provided in Table 5.2. The full 77-year series of simulated monthly runoff data for the Scenarios is provided in Table 5.5 to Table 5.9. A graphic representation of the percentage occurrence of the various Abiotic States is presented in Figure 5.3 to Figure 5.5.

Figure 5.1 Exceedance curve for the different scenarios indicating the decrease in daily flows under the various scenarios

Figure 5.2 Exceedance curve on a logarithmic scale for the different scenarios indicating the decrease in daily flows under the various scenarios

		-		•		1							
		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	99%ile	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 9%ile 20.44 9.04 3.58 2.93 2.85 2.46 6.88 18.42 28.08 43.56 38.17 0%ile 9.12 2.59 0.86 0.57 0.68 0.82 2.12 6.31 17.26 2.0.44 21.00 0%ile 7.65 2.28 0.76 0.54 0.56 0.62 1.54 5.00 12.38 17.02 18.06 0%ile 5.56 1.95 0.68 0.52 0.52 0.52 1.28 4.06 9.92 14.34 16.30 0%ile 4.13 1.46 0.57 0.52 0.43 0.83 2.75 6.31 9.95 13.22 0%ile 2.127 1.05 0.52 0.41 0.27 0.52 1.87 4.14 7.17 9.22 0%ile 2.04 8.79 3.58 2.81 <td>27.72</td>	27.72										
	90%ile	12.99	3.90	NOV DEC JAN FEB MAR APR MAY JUN JUL AUG S 9.04 3.58 2.93 2.85 2.46 6.88 18.42 28.08 43.56 38.17 27 3.90 1.51 0.82 0.83 1.14 3.53 10.38 22.36 24.41 26.32 18 2.28 0.76 0.54 0.56 0.62 1.54 5.00 12.38 17.02 18.06 12 1.95 0.68 0.52 0.52 0.52 1.28 4.06 9.92 14.34 16.30 12 1.63 0.65 0.52 0.52 0.43 0.83 2.75 6.31 9.95 13.22 9 1.27 0.54 0.52 0.48 0.33 0.27 0.52 1.87 4.14 7.17 9.22 0.52 0.41 0.27 0.25 0.33 1.44 2.82 5.61 8.15 5.	18.69								
	80%ile	9.12	2.59	0.86	0.57	FEB MAR APR MAY JUN JUL AUG SEF 2.85 2.46 6.88 18.42 28.08 43.56 38.17 27.7 0.83 1.14 3.53 10.38 22.36 24.41 26.32 18.66 0.68 0.82 2.12 6.31 17.26 20.44 21.00 15.3 0.52 0.52 1.28 4.06 9.92 14.34 16.30 12.29 0.52 0.52 1.07 3.28 7.59 12.87 14.86 10.8 0.52 0.43 0.83 2.75 6.31 9.95 13.22 9.02 0.48 0.33 0.61 2.32 4.66 8.59 10.93 7.87 0.33 0.27 0.52 1.87 4.14 7.17 9.22 6.69 0.27 0.25 0.33 1.44 2.82 5.61 8.15 5.43 0.08 0.12 0.25	15.39						
	70%ile	7.65	2.28	0.76	0.54	0.56	0.62	1.54	5.00	12.38	17.02	18.06	12.92
Scenario 1	60%ile	5.56	1.95	0.68	0.52	0.52	0.52	1.28	4.06	9.92	14.34	16.30	12.20
	50%ile	4.57	1.63	0.65	0.52	0.52	0.52	1.07	3.28	7.59	12.87	14.86	10.84
	40%ile	4.13	1.46	0.57	0.52	0.52	0.43	0.83	2.75	6.31	9.95	13.22	9.02
	30%ile	3.22	1.27	0.54	0.52	0.48	0.33	0.61	2.32	4.66	8.59	10.93	7.87
	20%ile	2.79	1.02	0.54	0.52	0.33	0.27	0.52	1.87	4.14	7.17	9.22	6.69
	10%ile	2.20	0.90	0.52	0.41	0.27	0.25	0.33	1.44	2.82	5.61	8.15	5.43
	1%ile	1.22	0.61	0.33	0.10	0.08	0.12	0.25	1.14	1.32	3.23	5.70	4.44
		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	99%ile	20.44	8.79	3.58	2.81	2.35	2.44	6.71	12.85	25.23	43.50	36.36	27.49
	90%ile	10.43	3.90	1.43	0.82	0.83	1.05	3.53	7.91	19.45	22.70	26.15	17.93
	80%ile	6.61	2.52	0.86	0.57	0.68	0.81	2.06	5.38	12.39	17.16	19.62	13.37
Scenarios 2 and 5	70%ile	5.89	1.98	0.74	0.52	0.54	0.56	1.50	4.34	9.39	13.35	16.73	11.27
Scenarios 2	OCT NOV DEC JAN FEB MAR APR MAY JUI 99%ile 20.44 9.04 3.58 2.93 2.85 2.46 6.88 18.42 28.0 90%ile 12.99 3.90 1.51 0.82 0.83 1.14 3.53 10.38 22.3 80%ile 9.12 2.59 0.86 0.57 0.65 0.62 1.54 5.00 12.3 60%ile 7.65 2.28 0.76 0.54 0.52 0.52 1.07 3.28 7.55 50%ile 4.57 1.63 0.65 0.52 0.52 0.43 0.83 2.75 6.3 30%ile 3.22 1.27 0.54 0.52 0.48 0.33 0.61 2.32 4.6 20%ile 2.02 0.90 0.52 0.41 0.27 0.25 1.87 4.1 10%ile 1.20 0.51 0.33 1.00 0.83 1.05	8.25	11.40	15.80	9.75								
and 5	50%ile	3.66	1.47	0.60	0.52	0.49	0.44	0.97	3.12	7.03	9.91	13.54	7.91
	40%ile	3.17	1.36	0.56	0.45	0.34	0.33	0.74	2.56	5.46	8.88	11.20	6.58
	30%ile	2.81	1.20	0.54	0.35	0.32	0.30	0.57	2.13	4.14	6.64	9.94	6.05
	20%ile	2.40	1.00	0.51	0.32	0.29	0.27	0.48	1.60	3.57	5.43	8.43	5.67
	10%ile	1.76	0.89	0.44	0.28	0.26	0.25	0.33	1.30	2.56	4.63	7.01	5.05
	1%ile	1.22	0.61	0.33	0.10	0.08	0.12	0.25	0.70	1.27	3.00	5.02	3.95
		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	99%ile	20.44	9.07	3.41	3.12	2.53	2.61	7.42	12.95	25.50	43.56	36.36	27.49
	90%ile	9.67	3.90	1.43	0.82	0.81	0.95	3.75	7.70	16.29	24.05	26.39	18.69
	80%ile	6.36	2.57	0.82	0.57	0.65	0.71	1.96	4.86	10.44	15.27	18.35	13.49
	70%ile	5.33	2.03	0.71	0.54	0.54	0.54	1.44	3.59	8.69	11.57	16.38	11.10
Sconaria 3	60%ile	3.81	1.64	0.61	0.52	0.53	0.52	1.13	3.17	6.84	10.41	14.75	8.89
Scenario 3	50%ile	3.32	1.47	0.57	0.52	0.52	0.52	0.86	2.77	5.09	7.97	11.94	7.63
	40%ile	2.84	1.23	0.54	0.52	0.52	0.43	0.69	1.91	4.23	6.50	9.46	6.50
	30%ile	2.47	1.11	0.54	0.52	0.51	0.33	0.54	1.67	3.03	5.80	7.05	5.52
	20%ile	1.97	0.97	0.54	0.52	0.35	0.28	0.52	1.45	2.57	4.51	6.19	4.63
	10%ile	1.59	0.81	0.52	0.34	0.27	0.25	0.33	1.36	2.10	3.27	4.95	3.61
	1%ile	1.06	0.61	0.44	0.22	0.14	0.12	0.27	1.15	0.95	1.90	3.93	2.61

Table 5.2 A summary of the monthly flow (m³s⁻¹) distribution under Scenario 1 to 6

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	99%ile	20.53	6.90	3.28	1.91	1.80	2.03	6.52	10.55	23.93	43.83	34.63	27.63
Scenario 4 Scenario 5 Scenario 6	90%ile	8.10	2.74	1.13	0.65	0.64	0.73	2.61	5.19	11.37	22.28	22.34	18.77
	80%ile	4.00	2.29	0.64	0.54	0.55	0.55	1.41	3.08	6.35	10.73	16.68	12.77
	70%ile	2.54	1.49	0.56	0.54	0.54	0.54	1.07	2.58	4.93	6.28	14.79	7.23
Scenario 4 Scenario 5 Scenario 5 Scenario 6 Scenario 6 Scenario 6 Scenario 6 Scenario 6 Scenario 1 Scenario 6 Scenario 1 Scenario 1 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 2 Scenario 1 Scenario 2 Scenario 2 Scenario 2 Scenario 2 Scenario 2 Scenario 3 Scenario 4 Scenario 4 Scenario 3 Scenario 4 Scenario 3 Scenario 4 Scenario 4 Scenario 4 Scenario 4 Scenario 5 Scenario 4 Scenario 4 Scena	60%ile	2.04	1.26	0.54	0.52	0.54	0.54	0.80	2.25	4.07	4.71	11.42	4.79
	50%ile	1.81	1.01	0.54	0.52	0.52	0.52	0.65	1.86	3.40	4.04	5.73	3.74
	40%ile	1.66	0.90	0.54	0.52	0.52	0.52	0.54	1.43	2.60	3.69	4.59	3.20
	30%ile	1.48	0.84	0.54	0.52	0.52	0.52	0.54	1.39	2.01	3.03	3.97	2.75
	20%ile	1.32	0.71	0.54	0.52	0.52	0.52	0.52	1.37	1.70	2.49	3.04	2.34
	10%ile	1.12	0.63	0.52	0.52	0.52	0.52	0.52	1.36	1.40	2.05	2.49	1.79
	1%ile	0.78	0.54	0.36	0.27	0.23	0.21	0.24	1.15	0.68	1.26	1.85	1.42
Scenario 5	Similar	to Pres	ent Sta	ate.									
		OCT	NOV	550									
		001	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	99%ile	20.44	8.79	3.58	JAN 2.81	FEB 2.35	MAR 2.44	APR 6.71	MAY 12.85	JUN 25.23	JUL 43.50	AUG 36.36	SEP 27.49
	99%ile 90%ile	20.44 10.43	8.79 3.90	DEC 3.58 1.43	2.81 0.82	FEB 2.35 0.83	MAR 2.44 1.05	APR 6.71 3.53	MAY 12.85 7.91	JUN 25.23 19.45	JUL 43.50 22.70	AUG 36.36 26.15	SEP 27.49 17.93
	99%ile 90%ile 80%ile	20.44 10.43 6.61	8.79 3.90 2.52	DEC 3.58 1.43 1.00	JAN 2.81 0.82 0.57	FEB 2.35 0.83 0.68	MAR 2.44 1.05 0.81	APR 6.71 3.53 2.06	MAY 12.85 7.91 5.38	JUN 25.23 19.45 12.39	JUL 43.50 22.70 17.16	AUG 36.36 26.15 19.62	SEP 27.49 17.93 13.37
	99%ile 90%ile 80%ile 70%ile	20.44 10.43 6.61 5.89	8.79 3.90 2.52 1.98	DEC 3.58 1.43 1.00 1.00	JAN 2.81 0.82 0.57 0.52	FEB 2.35 0.83 0.68 0.54	MAR 2.44 1.05 0.81 0.56	APR 6.71 3.53 2.06 1.50	MAY 12.85 7.91 5.38 4.34	JUN 25.23 19.45 12.39 9.39	JUL 43.50 22.70 17.16 13.35	AUG 36.36 26.15 19.62 16.73	SEP 27.49 17.93 13.37 11.27
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile	20.44 10.43 6.61 5.89 4.52	8.79 3.90 2.52 1.98 1.66	DEC 3.58 1.43 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52	FEB 2.35 0.83 0.68 0.54 0.52	MAR 2.44 1.05 0.81 0.56 0.51	APR 6.71 3.53 2.06 1.50 1.19	MAY 12.85 7.91 5.38 4.34 3.78	JUN 25.23 19.45 12.39 9.39 8.25	JUL 43.50 22.70 17.16 13.35 11.40	AUG 36.36 26.15 19.62 16.73 15.80	SEP 27.49 17.93 13.37 11.27 9.75
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile	20.44 10.43 6.61 5.89 4.52 3.66	8.79 3.90 2.52 1.98 1.66 1.47	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52	FEB 2.35 0.83 0.68 0.54 0.52 0.49	MAR 2.44 1.05 0.81 0.56 0.51 0.44	APR 6.71 3.53 2.06 1.50 1.19 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12	JUN 25.23 19.45 12.39 9.39 8.25 7.03	JUL 43.50 22.70 17.16 13.35 11.40 9.91	AUG 36.36 26.15 19.62 16.73 15.80 13.54	SEP 27.49 17.93 13.37 11.27 9.75 7.91
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile 40%ile	20.44 10.43 6.61 5.89 4.52 3.66 3.17	8.79 3.90 2.52 1.98 1.66 1.47 1.36	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52 0.52 0.52	FEB 2.35 0.83 0.68 0.54 0.52 0.49	MAR 2.44 1.05 0.81 0.56 0.51 0.44 0.33	APR 6.71 3.53 2.06 1.50 1.19 1.00 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12 2.56	JUN 25.23 19.45 12.39 9.39 8.25 7.03 5.46	JUL 43.50 22.70 17.16 13.35 11.40 9.91 8.88	AUG 36.36 26.15 19.62 16.73 15.80 13.54 11.20	SEP 27.49 17.93 13.37 11.27 9.75 7.91 6.58
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile 40%ile 30%ile	20.44 10.43 6.61 5.89 4.52 3.66 3.17 2.81	8.79 3.90 2.52 1.98 1.66 1.47 1.36 1.20	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52 0.52 0.45 0.35	FEB 2.35 0.83 0.68 0.54 0.52 0.49 0.34 0.32	MAR 2.44 1.05 0.81 0.56 0.51 0.44 0.33 0.30	APR 6.71 3.53 2.06 1.50 1.19 1.00 1.00 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12 2.56 2.13	JUN 25.23 19.45 12.39 9.39 8.25 7.03 5.46 4.14	JUL 43.50 22.70 17.16 13.35 11.40 9.91 8.88 6.64	AUG 36.36 26.15 19.62 16.73 15.80 13.54 11.20 9.94	SEP 27.49 17.93 13.37 11.27 9.75 7.91 6.58 6.05
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile 30%ile 20%ile	20.44 10.43 6.61 5.89 4.52 3.66 3.17 2.81 2.40	NOV 8.79 3.90 2.52 1.98 1.66 1.47 1.36 1.20 1.00	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	FEB 2.35 0.83 0.68 0.54 0.52 0.49 0.32 0.22	MAR 2.44 1.05 0.81 0.56 0.51 0.44 0.33 0.30 0.27	APR 6.71 3.53 2.06 1.50 1.19 1.00 1.00 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12 2.56 2.13 1.60	JUN 25.23 19.45 12.39 9.39 8.25 7.03 5.46 4.14 3.57	JUL 43.50 22.70 17.16 13.35 11.40 9.91 8.88 6.64 5.43	AUG 36.36 26.15 19.62 16.73 15.80 13.54 11.20 9.94 8.43	SEP 27.49 17.93 13.37 11.27 9.75 7.91 6.58 6.05 5.67
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile 40%ile 30%ile 20%ile 10%ile	20.44 10.43 6.61 5.89 4.52 3.66 3.17 2.81 2.40 1.76	8.79 3.90 2.52 1.98 1.66 1.47 1.36 1.20 1.00 1.00	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52 0.52 0.35 0.32 0.28	FEB 2.35 0.83 0.68 0.54 0.52 0.34 0.32 0.29 0.26	MAR 2.44 1.05 0.81 0.56 0.51 0.44 0.33 0.30 0.27 0.25	APR 6.71 3.53 2.06 1.50 1.19 1.00 1.00 1.00 1.00 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12 2.56 2.13 1.60 1.30	JUN 25.23 19.45 12.39 9.39 8.25 7.03 5.46 4.14 3.57 2.56	JUL 43.50 22.70 17.16 13.35 11.40 9.91 8.88 6.64 5.43 4.63	AUG 36.36 26.15 19.62 16.73 15.80 13.54 11.20 9.94 8.43 7.01	SEP 27.49 17.93 13.37 11.27 9.75 7.91 6.58 6.05 5.67 5.05
Scenario 6	99%ile 90%ile 80%ile 70%ile 60%ile 50%ile 40%ile 30%ile 20%ile 10%ile 1%ile	20.44 10.43 6.61 5.89 4.52 3.66 3.17 2.81 2.40 1.76 1.22	NOV 8.79 3.90 2.52 1.98 1.66 1.47 1.36 1.20 1.00 1.00	DEC 3.58 1.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	JAN 2.81 0.82 0.57 0.52 0.52 0.52 0.45 0.35 0.28 0.10	FEB 2.35 0.83 0.68 0.54 0.52 0.49 0.32 0.29 0.26 0.08	MAR 2.44 1.05 0.81 0.56 0.51 0.44 0.33 0.30 0.27 0.25 0.12	APR 6.71 3.53 2.06 1.50 1.19 1.00 1.00 1.00 1.00 1.00 1.00	MAY 12.85 7.91 5.38 4.34 3.78 3.12 2.56 2.13 1.60 1.30	JUN 25.23 19.45 12.39 9.39 8.25 7.03 5.46 4.14 3.57 2.56 1.27	JUL 43.50 22.70 17.16 13.35 11.40 9.91 8.88 6.64 5.43 4.63 3.00	AUG 36.36 26.15 19.62 16.73 15.80 13.54 11.20 9.94 8.43 7.01 5.02	SEP 27.49 17.93 13.37 11.27 9.75 7.91 6.58 6.05 5.67 5.05 3.95

5.2.2 Flood regime

As the Palmiet Estuary is a relatively small estuary, the underlying assumption of the flood analyses was that relatively small floods would be able to reset its sediment processes, but that the frequency at which these events occur was of great importance as this drives the rate at which the deposition/erosion cycle in the system occurs.

To undertake a first assessment of the effects of the different scenarios on the occurrence of floods, the occurrences and magnitudes of the highest average monthly flows are listed in Table 5.3 for the period October 1928 to September 2005, for which data for all scenarios are available.

For each scenario, the occurrence of such high monthly flows and its significance is briefly discussed.

Simulated daily flow data for the period October 1963 until September 2005 were also analysed to estimate the effects of the different scenarios on the occurrence of floods, the occurrences and magnitudes. The results are summarised in Table 5.4. For each scenario, the occurrence of the higher daily flows and its significance is briefly discussed.

		SIM	SIMULATED HIGHEST AVERAGE MONTHLY FLOWS (m³ s ⁻¹)encePresent and Scenario 5Scenario 1Scenario 2 and 6Scenario 3Scenario 41137.3044.8337.3037.3018.619247.1847.1846.9347.1847.482921.4127.6821.4120.7313.437342.4142.4142.4142.680720.0726.0720.0720.6610.177737.6937.6937.6937.6937.923924.3927.6423.9324.2919.764324.1927.5522.0222.1222.153822.3527.5419.9420.018.123230.1830.7429.0832.0128.696732.2533.8632.2533.8534.130336.0636.0636.0636.0636.0636.23										
Year	Month	Poforonco	Present and	Scenario	Scenario	Scenario	Scenario						
		Reference	Scenario 5	1	2 and 6	3	4						
1974	Aug	50.11	37.30	44.83	37.30	37.30	18.61						
1993	Jul	46.92	47.18	47.18	46.93	47.18	47.48						
1944	Jun	42.29	21.41	27.68	21.41	20.73	13.43						
1945	Jul	41.73	42.41	42.41	42.41	42.41	42.68						
1994	Jun	39.07	20.07	26.07	20.07	20.66	10.17						
1954	Jul	38.77	37.69	37.69	37.69	37.69	37.92						
1992	Jun	38.39	24.39	27.64	23.93	24.29	19.76						
1945	Jun	36.43	24.19	27.55	22.02	22.12	22.15						
2001	Jul	36.38	22.35	27.54	19.94	20.01	8.12						
1955	Aug	35.82	30.18	30.74	29.08	32.01	28.69						
1986	Aug	35.67	32.25	33.86	32.25	33.85	34.13						
1954	Aug	35.03	36.06	36.06	36.06	36.06	36.23						
1959	Мау	34.08	18.42	24.66	18.42	18.66	14.22						
1937	Jul	33.52	24.00	28.60	22.60	24.20	8.59						
1977	Jun	33.23	29.35	29.35	29.35	29.35	29.55						
1977	Jul	32.92	33.90	33.90	33.90	33.90	34.09						
1957	Jun	32.01	20.46	24.65	20.45	19.30	18.07						
1942	Jun	31.55	19.96	21.20	19.96	14.16	10.62						
1951	Jun	31.37	19.41	21.67	19.41	15.75	12.10						
1977	Aug	30.99	31.90	31.90	31.90	31.90	32.06						
1963	Aug	30.57	25.08	26.36	25.08	20.36	15.87						
1976	Jun	30.12	11.60	17.34	11.60	11.60	6.98						
Aver	age of	36.23	27 71	30.40	27 35	26.98	22.80						
22 e	vents	00.20	21.11	50.40	21.00	20.30	22.00						
% Rer	naining		76	84	76	74	63						

Table 5.3	Palmiet	highest	monthly	flows	(m ³ s ⁻¹)	simulated	data	for	October	1928	to
	Septemb	per 2005									

Table 5.4 Palmiet highest daily flows (m³s⁻¹) simulated data for October 1963 to September2005

Flow (m³s⁻¹)	Natural	Present and Scenario 5	Scenario 1	Scenario 2 and 6	Scenario 3	Scenario 4		
Average	8.147	5.184	5.917	5.095	4.764	3.551		
Occurrence of floods exceeding:								
>150	3	1	2	1	1	0		
>100	31	8	11	8	8	7		
>75	82	25	20	24	23	15		
>50	137	81	115	76	72	46		
Total	253	115	148	109	104	68		
% Occurrence	e in relation t	o Reference Conditio	on					
>150	100	33	67	33	33	0		
>100	100	26	35	26	26	23		
>75	100	30	24	29	28	18		
>50	100	59	84	55	53	34		
Total	100	45	58	43	41	27		

	The simulated monthly runoff data shows that for the conditions of this scenario the highest monthly flow was $47.2 \text{ m}^3 \text{s}^{-1}$ in July 1993. Average monthly flow higher than $30 \text{ m}^3 \text{s}^{-1}$ was exceeded 9 times during the 77-year period. These exceedances occurred 4 times in July and 5 times in August. These results are similar to those under present conditions.
Scenario 1	An analysis of the simulated daily flow data indicates that the occurrence of daily flows higher than 75 m ³ s ⁻¹ have been reduced between 33 to 76 %, depending on the size class. As the Palmiet Estuary is a relative small system, smaller events (flows higher than 50 m ³ s ⁻¹) may also assist in maintaining the sediment equilibrium, i.e. removing sediment from the mouth region and basin. Flows higher than 50 m ³ s ⁻¹ have been reduced by 16 %. The total reduction in the occurrence for daily flows higher than 50 m ³ s ⁻¹ is 42 %.
	The simulated monthly runoff data shows that for the conditions of this scenario the highest monthly flow was also $46.93 \text{ m}^3\text{s}^{-1}$ in July 1993. Average monthly flow higher than 30 m^3s^{-1} was exceeded 8 times during the 77-year period. These exceedances occurred 4 times in July and 4 times in August. These results are also similar to those under present conditions.
Scenario 2	An analysis of the simulated daily flow data indicates that the occurrence of daily flows higher than 75 m ³ s ⁻¹ have been reduced between 67 to 74 %, depending on the size class. As the Palmiet Estuary is a relative small system, smaller events (flows higher than 50 m ³ s ⁻¹) may also assist in maintaining the sediment equilibrium, i.e. removing sediment from the mouth region and basin. Flows higher than 50 m ³ s ⁻¹ have been reduced by 45 %. The total reduction in the occurrence for daily flows higher than 50 m ³ s ⁻¹ is 57 %.
	The simulated monthly runoff data shows that for the conditions of this scenario the highest monthly flow was also $47.2 \text{ m}^3 \text{s}^{-1}$ in July 1993. Average monthly flow higher than 30 m ³ s ⁻¹ was exceeded 9 times during the 77-year period. These exceedances occurred 4 times in July and 5 times in August. These results are also similar to those under present conditions.
Scenario 3	An analysis of the simulated daily flow data indicate that the occurrence of daily flows higher than 75 m ³ s ⁻¹ have been reduced between 67 to 74%, depending on the size class. As the Palmiet Estuary is a relative small system, smaller events (flows higher than 50 m ³ s ⁻¹) may also assist in maintaining the sediment equilibrium, i.e. removing sediment from the mouth region and basin. Flows higher than 50 m ³ s ⁻¹ have been reduced by 47 %. The total reduction in the occurrence for daily flows higher than 50 m ³ s ⁻¹ is 59 %.
	The simulated monthly runoff data shows that for the conditions of this scenario the highest monthly flow was also $47.2 \text{ m}^3 \text{s}^{-1}$ in July 1993. Average monthly flow higher than 30 m ³ s ⁻¹ was exceeded 7 times during the 77-year period. These exceedances occurred 4 times in July and 3 times in August. These results indicate a slightly lower occurrence of large floods for this Scenario 4 compared to Present day conditions and also compared to those under Scenarios 1 to 3.
Scenario 4	An analysis of the simulated daily flow data indicate that the occurrence of daily flows higher than 75 m ³ s ⁻¹ have been reduced between 82 to 100%, depending on the size class. As the Palmiet Estuary is a relative small system smaller events, (flows higher than 50 m ³ s ⁻¹) may also assist in maintaining the sediment equilibrium, i.e. removing sediment from the mouth region and basin. Flows higher than 50 m ³ s ⁻¹ have been reduced by 66 %. The total reduction in the occurrence for daily flows higher than 50 m ³ s ⁻¹ is 73 %.
Scenario 5	Similar to Present State.
Scenario 6	Similar to Scenario 2.

5.2.3 Droughts

Hydrological drought conditions in the Palmiet Estuary are defined as years in which the annual inflow (million m³) falls below the Reference Condition 10 %ile, i.e. 175 million m³.

Scenario 1	Annual flows are less than 175 million m ³ for 53 % of the time. An analysis of the 77- year period also highlights the occurrence of extended drought periods varying between 2 to 5 years in a row (see Figure 5.5).
Scenario 2	Annual flows are less than 175 million m ³ for 66 % of the time. An analysis of the 77- year period also highlights the occurrence of extended drought periods varying between 2 to 10 years in a row (see Figure 5.5).
Scenario 3	Annual flows are less than 175 million m ³ for 68 % of the time. An analysis of the 77- year period also highlights the occurrence of extended drought periods varying between 2 to 12 years in a row (see Figure 5.5).
Scenario 4	Annual flows are less than 175 million m ³ for 83 % of the time. An analysis of the 77- year period also highlights the occurrence of extended drought periods varying between 2 to 19 years in a row (see Figure 5.5).
Scenario 5	Similar to Present State.
Scenario 6	Similar to Scenario 2.

5.2.4 Sediment processes

This section describes the changes in sediment processes under the Scenarios compared with Reference Condition.

Scenario 1	Major floods play an important role in the long-term equilibrium of sedimentation/erosion in the estuary. As stated previously, the frequency at which small events occur drives the rate at which the deposition/erosion cycles occur. If the period between flood events increases, marine sand will deposit in lower regions through wave action. The net result is reduction of inter- and sub-tidal habitat in the lower reaches between floods. While Palmiet Estuary was a relatively sediment starved system from a catchment perspective, the large dams in the system are now trapping what little sediment would have came down, which in turn is preventing the infilling of some of the rocky areas in the upper reaches. The net result is a very rocky substrate in the upper reaches. The flood analysis indicates that there is about a 40 % reduction in the occurrence of large and intermediate floods to the Palmiet Estuary from Reference Condition. This represents a slight increase in high flow events in relation to the Present State. Therefore, the long-term equilibrium in sediment dynamics in the system is judged to be
Scenario 2	There is about a 57 % reduction in the occurrence of large and intermediate floods to the Palmiet Estuary from Reference Condition. This represents a slight decrease in high flow events in relation to the Present Sate. Therefore, the long-term equilibrium in sediment dynamics in the system is judged to be very similar to present.
Scenario 3	There is about a 59 % reduction in the occurrence of large and intermediate floods to the Palmiet Estuary from Reference Condition. This represents a slight decrease in high flow events in relation to the Present Sate. Therefore, the long-term equilibrium in sediment dynamics in the system is judged to be very similar to present.
Scenario 4	There is about a 73% reduction in the occurrence of large and intermediate floods to the Palmiet Estuary from Reference Condition. This represents a decrease in high flow events in relation to the Present Sate. Therefore, the long-term equilibrium in sediment dynamics in the system is judged to somewhat more disturbed under the Scenario 4 compared to present day conditions and that infilling would occur even more frequently in the lower reaches.
Scenario 5	Similar to Present State.
Scenario 6	Similar to Scenario 2.

5.2.5 Occurrence and duration of different Abiotic states

Figure 5.3 provides an estimation of the occurrence and duration of different abiotic states for each of the Scenarios.

Figure 5.3 Graphic summary of the occurrence of the various abiotic states under Scenarios 1 to 6

Figure 5.4 Graphic illustrations of the reduction in median (50 %ile) and drought (10 %ile) flows. The 75 %ile and 25 %ile values are indicative of the variability in flow for individual months EHI Scoring of abiotic components

Figure 5.5 Graphic illustrations of the number of times the annual inflow to the Palmiet Estuary falls below the Reference Condition drought conditions under Scenarios 1 to 6

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
1928	3.14	1.00	0.70	0.52	0.52	0.26	1.52	2.72	3.39	14.65	18.06	7.74
1929	1.37	0.78	0.54	0.52	0.54	0.54	0.89	1.18	1.36	3.27	5.79	16.54
1930	9.12	2.16	0.79	0.52	0.52	0.28	2.67	3.30 3.18	3.05	7.43	15.72	15.18
1932	6.17	1 13	0.70	0.54	0.80	0.83	0.32	1 72	11 54	16.30	19 78	7 99
1933	3.58	1.01	0.52	0.52	0.35	0.32	0.30	2.08	2.25	5.64	10.70	11.44
1934	9.01	2.16	0.54	0.52	0.27	0.48	1.32	4.95	8.45	9.85	7.19	6.67
1935	2.49	2.08	0.74	0.99	0.74	0.62	0.55	4.09	5.84	8.60	11.02	9.51
1936	3.93	2.28	1.53	0.71	0.52	0.52	1.07	2.82	17.24	28.60	15.07	8.52
1937	4.23	1.21	0.54	0.52	0.52	0.48	1.68	4.10	3.21	5.77	7.88	12.28
1938	5.84 1.04	1.53	0.57	0.52	0.80	0.65	1.27	3.28 5.60	2.75	5.59	13.74	0.03
1940	2.39	2 71	0.03	0.52	0.54	0.52	5.15	16 45	24 25	20.49	16.95	30.52
1941	12.95	2.33	0.80	0.57	0.52	0.52	0.57	4.01	21.20	13.46	13.54	7.58
1942	1.72	0.64	0.54	2.54	1.64	0.62	1.45	2.47	4.53	9.77	18.38	13.03
1943	4.29	1.62	0.58	0.52	0.54	0.28	0.49	4.21	27.68	23.41	25.72	22.43
1944	9.08	1.63	0.85	0.52	0.32	0.24	0.70	10.37	27.55	42.41	29.31	8.73
1945	7.47	2.29	0.60	0.52	0.52	0.97	1.39	1.81	2.87	4.66	8.32	12.08
1940	2.99	1.02	0.52	0.39	0.20	0.92	0.90	2.03	4.05	9.01	7 35	0.90
1948	13.22	2.53	0.54	0.52	0.52	0.40	1.40	2.43	4.25	5.62	11.44	8.28
1949	4.01	2.07	0.73	0.52	0.52	0.24	2.66	2.31	1.73	14.47	8.62	12.85
1950	8.97	8.74	2.38	0.73	0.52	0.52	3.76	5.00	21.67	24.58	15.76	26.53
1951	10.50	2.76	0.79	0.52	0.50	0.43	0.53	2.16	2.34	7.93	17.94	12.60
1952	6.87	1.82	0.83	0.35	0.29	0.27	3.38	7.98	7.35	14.05	15.16	6.12
1953	2.78	1.98	0.65	0.52	0.31	0.33	1.13	13.05	5.24	37.09	30.00	14.98
1954	12.22	2 99	0.38	0.52	0.54	0.41	0.56	4.84	10.29	12.07	13.80	5.94
1956	4.57	1.24	0.54	0.52	0.69	0.80	1.19	13.00	24.65	30.08	26.88	13.83
1957	19.73	3.77	0.56	0.52	0.80	1.12	0.86	5.51	7.44	4.23	14.86	10.84
1958	3.47	1.34	0.57	0.34	0.33	0.36	5.45	24.66	13.94	7.38	21.00	11.14
1959	5.57	1.44	0.54	0.52	0.29	0.34	0.48	2.79	9.37	8.32	5.62	5.56
1960	2.24	0.73	0.66	1.28	0.81	0.52	0.52	1.55	4.70	5.70	13.79	11.96
1901	16 13	4 17	0.52	0.52	0.49	0.52	0.54	1.05	4 13	14.07	20.29	12.90
1963	2.48	1.27	0.70	0.54	0.56	0.52	0.73	1.78	7.87	14.15	22.41	12.63
1964	8.40	4.10	0.97	0.52	0.57	1.15	1.67	4.89	5.23	8.25	11.18	4.46
1965	4.46	1.48	0.92	0.54	0.52	1.13	1.23	2.32	4.19	12.87	17.50	12.78
1966	2.75	0.80	0.52	0.52	0.27	0.33	4.81	6.09	13.17	13.33	9.97	7.19
1967	6.58	1.72	0.66	0.54	0.56	0.54	0.83	5.45	13.53	13.95	17.04	7.81
1968	8.38	1.70	0.55	0.57	0.58	0.74	1.19	1.34	4.29	5.43	20.26	13 02
1970	5.08	1.60	0.94	0.52	0.52	0.50	0.27	1 40	2 76	8 91	14 67	7.89
1971	2.53	0.96	0.55	0.52	0.56	0.54	2.13	5.00	5.88	7.12	9.80	6.77
1972	1.83	0.80	0.54	0.52	0.29	0.25	0.32	1.13	1.18	8.40	9.18	8.83
1973	3.97	0.95	0.54	0.52	0.50	0.27	0.26	2.93	6.23	6.96	44.83	26.83
1974	14.12	2.61	0.58	0.52	0.52	0.27	0.68	4.25	/.54	18.45	24.37	8.76
1975	5.25	1.44	0.54	0.52	0.33	0.39	0.75	1.87	17.34	20.26	31.00	11.73
1977	3.23	1.00	0.68	0.52	0.00	0.45	0.84	1.46	1.52	4.17	10.98	11.08
1978	7.22	1.90	0.55	0.54	1.90	1.17	0.52	5.19	11.99	10.86	9.36	9.86
1979	16.48	3.06	0.54	0.52	0.56	0.54	1.29	3.56	8.33	6.24	5.73	5.18
1980	4.06	8.15	3.51	4.17	1.73	0.81	3.17	3.07	3.73	21.10	24.27	25.28
1981	5.15	1.26	0.65	0.52	0.52	0.2/	1.70	1.59	4.22	5.05	7.82	5.1/
1982 1083	2.50	0.95	0.95	0.57	2.33	0.44	0.62	10.40	23.41	24.30 11.94	8.66	16.37
1984	13.07	2.45	2.79	1.19	1.57	2.94	4.35	3.44	7.05	19.26	21.00	9,29
1985	5.41	1.62	0.54	0.52	0.57	1.26	1.90	2.29	6.71	13.53	33.86	16.27
1986	3.05	1.25	0.58	0.52	0.54	0.52	1.38	5.34	11.00	11.50	18.18	13.04
1987	3.15	1.99	0.95	0.30	0.09	0.29	1.13	2.53	6.72	11.51	8.84	12.73
1988	4.23	1.41	0.22	0.08	0.18	1.98	4.61	1.73	14.34	15.99	20.69	22.90
1989 1000	2 81	2.81	0.81	0.52	0.72	0.88	3.17	3 56	10.80	23.95 22.97	16.07	0.47
1991	8.41	2.50	0.68	0.52	0.37	0.33	2.07	7.72	27.64	21.29	14.83	12.88
1992	17.14	3.42	0.66	0.52	0.74	0.28	11.40	8.45	19.42	47.18	16.40	5.25
1993	1.22	0.53	0.83	0.10	0.06	0.19	0.33	1.37	26.07	17.07	10.03	4.57
1994	2.83	0.73	0.37	0.22	0.17	0.14	0.48	2.92	8.07	17.00	17.03	6.14
1995	12.94	2.39	3.29	1.1/	0.54	0.52	0.52	2.23	12.11	22.33	14.16	19.16
1990	1 22.08	5.72	2.03	0.80	0.52	0.03	1.08	3.25	13.20	15 30	10.22	4.89
1998	1.54	5.40	2.06	0.76	0.52	0.52	0.71	2.60	6.43	8.51	10.22	9.93
1999	4.28	1.63	0.39	0.47	0.09	0.71	0.40	1.88	5.22	10.05	9.01	17.14
2000	3.19	0.91	0.54	0.52	0.39	0.16	0.29	6.36	5.62	27.54	26.07	23.23
2001	4.34	1.38	0.65	1.82	0.79	0.52	1.63	3.70	9.26	16.55	16.31	6.32
2002	4.82	1.59	0.54	0.52	0.40	1.30	1.03	3.75	3.55	3.08	14.96	10.32
2003	9.73	1.38	0.76	0.54	0.44	0.27	5.04	7.37	4.33	9.60	21 12	4.95
2001	7.75	1.00	0.01	0.02	0.02	0.10	0.01	1.07		7.00	L 21.12	7.01
State 1	<0.15	State 2	0.15-1	State 3	1.0-10	State 4	10 - 20	State 5	> 20			

Table 5.5 Simulated monthly flows to the Palmiet Estuary for Scenario 1 (m³s⁻¹)

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1928	2.41	0.96	0.70	0.52	0.52	0.26	1.52	2.72	3.39	10.94	12.33	6.11
1929	1.24	0.73	0.52	0.39	0.47	0.50	0.48	0.53	1.36	2.73	5.79	13.43
1930	6.50	1.81	0.78	0.31	0.34	0.28	2.67	3.36	2.00	5.84	15.72	13.32
1931	11.21	2.07	0.70	0.46	0.86	0.55	0.33	3.18	7.72	9.88	8.39	13.22
1932	5.90	1.07	0.51	0.33	0.31	0.29	0.32	1.43	10.09	12.23	18.19	6.36
1933	2.84	0.97	0.39	0.26	0.33	0.32	0.30	1.57	2.13	4.44	10.70	8.98
1934	8.51	1.99	0.52	0.27	0.27	0.48	1.32	4.35	5.92	6.76	5.60	6.03
1935	2.42	1.04	0.74	0.99	0.74	0.38	0.55	2.91	16.62	22.60	13.65	5.66
1930	2.09	1.03	0.54	0.71	0.34	0.30	1.62	2.02	2.87	/ 18	7.88	12.28
1938	4 95	1.07	0.57	0.31	0.40	0.65	1.02	3.28	2.07	5.23	12 15	6.03
1939	1.62	1.23	0.65	0.34	1.15	0.84	2.94	4.28	9.00	7.08	5.82	8.32
1940	2.39	2.52	0.87	0.61	0.51	0.30	4.27	11.09	18.35	20.38	16.95	30.52
1941	11.89	2.33	0.80	0.57	0.52	0.52	0.57	3.95	19.96	9.12	13.54	5.83
1942	1.54	0.64	0.54	2.38	1.61	0.62	1.45	1.95	4.53	8.92	16.38	7.67
1943	3.98	1.45	0.58	0.33	0.32	0.28	0.49	4.18	21.41	22.70	25.72	22.43
1944	6.63	1.49	0.85	0.52	0.27	0.24	0.70	10.37	22.02	42.41	29.31	5.97
1945	6.17	1.98	0.60	0.52	0.30	0.97	1.37	1.66	2.87	4.66	8.32	12.08
1946	2.99	0.90	0.37	0.26	0.26	0.92	0.96	1.98	3.81	18.08	9.14	5.42
1947	1.86	1.01	0.44	0.28	0.30	0.48	0.64	1.36	4.03	9.01	7.35	7.46
1948	0.23	2.03	0.54	0.52	0.52	0.25	1.40	2.43	3.93	0.02 10.02	10.08	7.13
1949	2.79	7.89	2.38	0.33	0.20	0.24	2.37	2.31	10/1	22.00	15 76	26.53
1950	7.01	2 76	0.79	0.73	0.52	0.32	0.53	2 16	2 34	6.61	16.59	10.67
1952	5.97	1.82	0.73	0.32	0.30	0.43	3.38	7.87	5.80	12.46	15.16	4 00
1953	1.99	1.92	0.65	0.52	0.31	0.33	1 07	10.81	15.18	37.69	36.06	13.39
1954	3.24	1.67	0.58	0.37	4.20	2.28	1.39	1.32	3.03	17.12	29.08	15.51
1955	9.91	2.99	0.87	0.52	0.54	0.41	0.56	4.84	9.39	11.09	12.21	5.94
1956	3.24	1.24	0.54	0.52	0.69	0.80	1.19	7.96	20.45	30.08	26.88	12.50
1957	19.73	3.77	0.56	0.52	0.80	1.12	0.86	5.51	7.44	3.19	9.48	9.82
1958	3.47	1.31	0.48	0.34	0.33	0.36	5.23	18.42	9.67	4.78	20.30	8.40
1959	4.03	1.44	0.54	0.52	0.29	0.34	0.48	2.79	8.95	5.32	5.07	3.79
1960	1.89	0.73	0.61	1.28	0.81	0.30	0.33	1.09	4.06	5.25	13.11	11.06
1961	3.66	1.07	0.39	0.28	0.36	0.51	1.49	1.28	17.04	14.67	26.29	10.28
1962	16.13	4.17	0.70	0.54	0.52	0.52	0.54	1.36	3.91	13.24	25.08	7.22
1963	1.96	1.20	0.60	0.34	0.56	0.46	0.62	0.95	7.03	8.57	20.64	9.30
1964	4.55	4.10	0.97	0.52	0.37	1.15	1.07	3.83	4.70	0.40	9.60	4.10
1905	2.18	0.79	0.92	0.53	0.34	0.93	1.01	2.32	0.00	9.06	8.94	5.40
1967	5.61	1 49	0.52	0.32	0.27	0.33	0.78	5 39	9.38	10.07	16.96	5.40
1968	6.11	1.70	0.55	0.57	0.58	0.74	1.19	1.34	4.29	5.43	7.69	6.37
1969	5.88	1.86	0.51	0.28	0.35	0.30	0.27	1.88	7.15	9.89	19.79	8.78
1970	3.77	1.40	0.94	0.54	0.33	0.29	0.31	1.05	2.70	8.86	13.23	6.42
1971	2.13	0.96	0.44	0.36	0.55	0.48	2.01	4.79	5.24	4.58	8.95	6.32
1972	1.38	0.65	0.47	0.34	0.29	0.25	0.32	0.78	0.99	5.87	6.19	6.52
1973	2.81	0.89	0.44	0.32	0.29	0.27	0.26	2.93	4.33	3.93	37.30	20.83
1974	8.91	2.61	0.58	0.52	0.52	0.27	0.68	4.25	6.41	13.81	16.78	5.72
1975	3.55	1.38	0.54	0.52	0.32	0.39	0.75	1.87	11.60	14.62	11.75	10.11
1976	4.46	8.99	3.80	0.86	0.66	0.82	2.37	10.13	29.35	33.90	31.90	14.78
1977	3.23 5.37	1.00	0.68	0.35	0.35	0.45	0.72	0.97	7.04	4.17	7.65	9.00
1979	11.68	2.64	0.53	0.35	0.49	0.32	1.01	3.56	8.33	5.01	4.85	5.06
1980	2.94	6.52	3.51	4.17	1.73	0.81	3.17	1.85	2.78	14.30	22.50	17.63
1981	3.84	1.23	0.65	0.52	0.52	0.27	1.70	1.59	4.16	4.67	7.06	5.17
1982	2.27	0.95	0.88	0.57	1.49	1.30	0.62	6.27	19.51	22.71	14.89	18.37
1983	3.67	0.89	0.52	0.52	0.30	0.44	0.84	10.40	8.17	9.91	5.88	16.61
1984	12.21	2.45	2.79	1.19	1.57	2.94	4.35	2.42	5.79	17.17	21.00	7.91
1985	4.48	1.62	0.54	0.52	0.57	1.26	1.90	2.29	6.71	12.25	32.25	16.27
1986	2.65	1.23	0.58	0.52	0.54	0.52	1.38	5.34	7.89	10.58	16.59	13.04
1987	3.15	1.53	0.95	0.30	0.09	0.29	1.13	2.53	6.72	10.37	7.80	10.88
1988	2.00	1.41	0.22	0.08	0.18	1.98	4.01	4.89	9.39	22.05	18.92	22.90
1909	1.22	2.01	0.81	0.52	0.72	0.03	0.32	7.07	0.85	23.90	16.07	16.37
1990	8.41	2.50	0.52	0.10	0.10	0.03	2.07	7 72	23.03	21 20	14.83	12.88
1992	17.14	3 42	0.66	0.52	0.74	0.00	11.40	7.68	12.59	46.93	16.40	5.25
1993	1.22	0.53	0.83	0.10	0.06	0.19	0.33	1.37	20.07	11.87	10.03	4.57
1994	2.83	0.73	0.37	0.22	0.17	0.14	0.48	2.92	8.07	12.63	16.33	5.29
1995	8.52	2.39	3.29	1.17	0.54	0.52	0.52	2.23	9.02	15.00	14.16	19.16
1996	22.68	8.72	2.63	0.80	0.52	0.63	0.94	3.12	15.65	8.99	12.32	4.89
1997	1.21	5.36	1.50	0.57	0.52	0.25	1.08	8.77	9.08	12.96	10.22	4.35
1998	1.54	5.40	2.06	0.76	0.52	0.52	0.71	2.60	6.40	8.51	10.14	9.93
1999	3.64	1.07	0.39	0.47	0.09	0.71	0.40	1.77	5.22	6.65	8.57	10.92
2000	2.71	0.91	0.37	0.26	0.39	0.16	0.29	5.71	4.75	19.94	26.07	23.23
2001	2.88	1.35	0.65	1.82	0.79	0.52	1.63	3.70	8.30	10.17	15.82	5.15
2002	4.74	1.47	0.44	0.32	0.29	1.12	0.78	3.14 0.75	3.55	3.08	0.41	0.02
2003	6.26	1.11	0.00	0.40	0.24	0.27	4.87	5 31	13.81	7.91	16.72	6.33
2004	0.20	1.00	0.43	0.00	5.21	0.10	4.07	0.01	10.01	1.31	10.12	0.00
State 1	<0.15	State 2	0.15-1	State 3	1-10	State 4	10 - 20	State 5	> 20			

Table 5.6 Simulated monthly flows to the Palmiet Estuary for Scenario 2 (m³s⁻¹)

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1928	2.41	0.96	0.60	0.52	0.52	0.26	1.44	1.66	2.23	10.42	12.58	5.24
1929	1.18	0.72	0.54	0.52	0.54	0.54	0.54	1.32	0.94	1.65	4.29	11.60
1930	0.50 7.50	1.81	0.73	0.52	0.52	0.28	2.72	2.81	1.92 4.16	3.30 5.48	9.80 5.55	10.88
1932	4.39	1.11	0.54	0.52	0.52	0.29	0.32	1.45	7.72	10.37	17.94	6.13
1933	2.37	1.01	0.52	0.52	0.35	0.32	0.30	1.57	2.25	2.89	6.57	8.98
1934	6.36	1.75	0.53	0.27	0.27	0.48	1.32	4.20	4.86	6.46	4.85	4.46
1935	1.78	1.64	0.74	0.99	0.74	0.57	0.54	2.91	3.40	4.91	1.33	6.76 5.22
1930	2.09	1.65	0.54	0.71	0.46	0.30	0.69	3.28	9.00 2.61	24.20	5 11	0.32 8.39
1938	4.95	1.34	0.57	0.31	0.80	0.65	1.22	2.12	2.09	3.16	7.98	5.48
1939	1.62	1.07	0.65	0.34	1.15	0.84	3.12	3.31	7.20	7.12	3.96	4.69
1940	2.06	2.49	0.87	0.61	0.54	0.52	5.55	11.14	18.57	20.49	16.95	30.52
1941	11.54	1.97	0.77	0.57	0.52	0.52	0.57 1.4E	3.51	14.10	13.46	13.54	5.53
1942	2.94	1.61	0.54	0.52	0.54	0.02	0.49	3.58	20.73	23.41	25.72	22.43
1944	5.50	1.63	0.63	0.52	0.52	0.24	0.70	7.75	22.12	42.41	29.31	5.97
1945	5.48	2.29	0.60	0.52	0.52	0.97	1.04	1.36	1.75	2.78	4.64	7.63
1946	2.99	0.88	0.42	0.26	0.26	0.92	0.96	1.87	2.58	10.94	9.44	4.18
1947	1.56	0.97	0.54	0.52	0.39	0.48	0.68	1.45	2.84	5.01	5.25	/.46
1940	2 79	2.00	0.54	0.52	0.52	0.25	1.40 2.37	1.94	2.04	3.33 8.46	6.94	7.09
1950	5.83	8.70	2.10	0.73	0.52	0.52	4.04	3.06	15.75	24.58	15.76	26.53
1951	7.01	2.76	0.74	0.52	0.54	0.43	0.54	1.67	2.11	4.44	10.27	13.58
1952	5.29	2.58	0.79	0.52	0.52	0.27	3.56	5.36	4.86	14.04	15.16	3.94
1953	1.90	1.48	0.65	0.52	0.52	0.38	1.13	8.64	16.07	37.69	36.06	13.10
1954	2.70	2.00	0.58	0.52	4.95	2.31	0.54	1.32	3.03 6.78	7.81	32.01	10.01
1956	3.24	1.13	0.54	0.52	0.69	0.80	0.86	8.36	19.30	30.08	26.88	12.22
1957	19.73	3.77	0.54	0.52	0.80	0.79	0.83	3.21	4.80	3.19	9.48	6.48
1958	2.81	1.14	0.54	0.52	0.52	0.36	6.09	18.66	9.67	4.49	20.06	8.12
1959	4.03	1.23	0.54	0.52	0.46	0.34	0.48	2.05	6.27	5.32	3.81	3.79
1960	1.01	0.73	0.61	1.28	0.81	0.30	0.33	1.30 1.37	2.50	3.83	27.20	7.84 12.04
1962	16.13	4.17	0.70	0.54	0.52	0.51	0.52	1.36	3.37	10.10	20.36	10.17
1963	1.78	1.17	0.60	0.52	0.56	0.54	0.65	1.36	5.95	8.57	20.62	9.02
1964	4.55	4.10	0.97	0.52	0.57	0.78	1.51	3.20	3.03	5.52	6.28	4.18
1965	3.20	1.47	0.92	0.54	0.52	0.93	1.03	1.64	2.56	6.35	12.38	14.24
1966	2.18	0.79	0.52	0.52	0.27	0.33	4.78	4.08	8.60	9.10	6.91	4.62
1968	5.72	1.72	0.57	0.54	0.50	0.52	0.83	4.44	3.00	3 34	4 70	5.03
1969	5.88	1.86	0.54	0.28	0.35	0.30	0.27	1.88	5.32	7.92	13.26	8.76
1970	3.77	1.58	0.94	0.54	0.52	0.52	0.52	1.36	2.70	6.09	9.76	5.63
1971	2.05	0.87	0.54	0.36	0.55	0.48	2.01	3.65	3.49	4.58	6.54	4.76
1972	1.38	0.65	0.47	0.34	0.29	0.25	0.32	0.78	0.99	5.87	6.19	6.52
1973	2.81	0.89	0.44	0.32	0.29	0.27	0.20	2.93	4.33 4.37	3.93	37.30	20.83
1975	3.48	1.44	0.54	0.52	0.33	0.39	0.75	1.56	11.60	14.77	10.14	9.83
1976	3.32	10.18	3.80	0.86	0.66	0.69	2.51	10.13	29.35	33.90	31.90	14.78
1977	1.95	1.10	0.57	0.52	0.52	0.54	0.76	1.34	1.03	3.32	7.08	8.04
1978	3.96	1.15	0.55	0.44	1.77	1.00	0.50	4.62	6.87	6.77	5.70	6.65
1979	9.84	3.00	0.54	0.52	0.50	0.52	1.07	2.82	5./I 1.07	4.94	4.25	3.19
1981	3.84	1.23	0.54	0.52	0.52	0.01	1.75	1.00	3.06	3.09	4.62	3.82
1982	1.96	0.90	0.88	0.57	1.57	1.21	0.62	6.01	16.62	24.30	14.61	18.37
1983	3.54	0.89	0.52	0.52	0.30	0.44	0.84	8.08	8.17	6.49	5.01	16.61
1984	11.86	2.45	2.25	1.19	0.67	3.54	5.13	2.42	3.58	18.51	21.00	7.63
1985	4.48	1.5/	0.54	0.52	0.57	0.52	1.40	1.30	4.48	7 97	33.85	13.04
1987	2.48	0.68	0.95	0.52	0.27	0.22	1.13	2.50	5.54	8.50	5.32	7.88
1988	2.32	1.27	0.52	0.08	0.18	1.98	5.38	4.96	9.43	10.56	19.58	22.90
1989	6.32	2.81	0.77	0.52	0.72	0.60	3.17	7.67	11.12	23.95	18.07	3.33
1990	1.07	0.99	0.54	0.52	0.18	0.03	0.33	3.56	9.73	18.98	16.29	16.37
1991 1000	8.41	2.50	0.57	0.52	0.49	0.33	1.80	5.18	24.29	21.29 47.19	14.83	12.88
1992	1.11	0.54	0.83	0.52	0.02	0.20	0.33	1.37	20.66	11.87	6.19	3.32
1994	2.00	0.73	0.52	0.52	0.17	0.14	0.48	2.92	5.67	12.63	16.38	3.88
1995	9.29	2.39	3.29	1.09	0.54	0.52	0.52	1.36	9.02	15.31	14.16	19.16
1996	22.68	8.72	2.63	0.80	0.52	0.52	0.52	3.12	10.15	6.52	11.94	3.08
1997	1.05	6.25	1.50	0.57	0.52	0.52	1.15	9.09	9.08	10.4/	8.01	2.92
1990	3.16	1.02	0.52	0.78	0.32	0.52	0.54	1.02	4.57	6.65	5.30	12.00
2000	1.95	0.82	0.52	0.52	0.40	0.16	0.29	5.78	3.61	20.01	26.07	23.23
2001	2.88	1.35	0.54	1.82	0.79	0.52	0.68	2.77	7.28	10.85	16.31	3.31
2002	3.60	1.44	0.54	0.52	0.52	1.30	0.78	2.40	2.37	1.98	10.62	5.96
2003	3.72	1.09	0.60	0.54	0.54	0.40	0.28	1.27	2.98	5.94	9.08	2.45
2004	0.20	1.02	0.04	0.55	0.27	0.10	4.07	4.71	13.97	0.33	13.12	5.19
State 1	<0.15	State 2	0.15-1	State 3	1-10	State 4	10 - 20	State 5	> 20			

Table 5.7	Simulated monthly	flows to the	Palmiet Es	stuary for	Scenario 3	(m³s⁻¹))					
-----------	-------------------	--------------	------------	------------	------------	---------	---					
YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
---------	-------	---------	--------	---------	------	---------	---------	--------------	--------------	----------------	-------	---------------
1928	1.78	0.69	0.54	0.52	0.52	0.52	1.07	1.39	1.47	5.69	5.73	2.60
1929	0.92	0.56	0.54	0.52	0.54	0.54	0.54	1.32	0.69	1.17	2.82	5.92
1930	3.31	1.31	0.58	0.52	0.52	0.52	2.11	1.86	1.27	2.07	4.50	3.93
1931	3.32	1.65	0.55	0.54	0.68	0.54	0.52	1.68	2.76	3.40	2.60	3.81
1932	1 42	0.85	0.54	0.52	0.52	0.52	0.52	1.39	1.58	1 90	3.72	4.00
1934	2.99	1.38	0.54	0.52	0.52	0.54	1.05	3.04	3.19	3.00	2.27	2.08
1935	1.31	1.13	0.58	0.79	0.59	0.54	0.54	2.12	2.24	3.04	3.41	3.14
1936	1.79	1.28	1.09	0.56	0.52	0.52	0.67	1.39	5.97	8.59	13.41	3.86
1937	1.64	0.85	0.54	0.52	0.52	0.52	1.25	2.26	1.72	1.62	2.37	3.87
1938	2.50	1.05	0.54	0.52	0.63	0.55	0.91	1.53	1.38	2.07	3.89	2.61
1939	1.14	0.83	0.55	0.27	0.91	0.67	2.31	2.18	3.99	3.29	1.86	2.06
1940	10.42	1.31	0.69	0.54	0.54	0.52	0.54	2 49	10.62	20.42	13.65	4 70
1942	1.05	0.54	0.54	1.79	1.20	0.52	0.76	1.37	1.41	3.25	5.37	5.76
1943	1.63	1.05	0.54	0.52	0.54	0.52	0.54	2.57	13.43	23.50	25.88	22.52
1944	4.69	1.47	0.54	0.52	0.52	0.52	0.56	5.28	22.15	42.68	29.44	3.66
1945	2.43	1.51	0.54	0.52	0.52	0.67	0.80	1.36	1.21	1.83	2.86	3.43
1946	1.90	0.69	0.52	0.52	0.52	0.73	0.76	1.46	1.70	5.94	4.26	1.87
1947	3.70	0.09	0.54	0.52	0.54	0.54	0.54	1.37	1.92	3.29	2.48	3.34
1949	1 76	1.72	0.54	0.52	0.52	0.52	1.07	1.41	0.63	4 78	3.00	3.05
1950	2.69	2.73	1.47	0.58	0.52	0.52	2.18	2.01	12.10	24.74	15.82	26.66
1951	4.99	2.63	0.58	0.52	0.54	0.54	0.54	1.39	1.45	2.91	5.06	7.60
1952	5.20	2.44	0.62	0.52	0.52	0.52	2.61	3.52	2.50	12.17	15.25	2.25
1953	1.10	0.94	0.55	0.52	0.52	0.52	0.85	5.82	12.32	37.92	36.23	12.23
1954	1.61	0.84	0.54	0.52	3.05	1.57	0.58	1.32	1.81	4.55	28.69	15.53
1955	0.01	2.85	0.50	0.52	0.54	0.54	0.54	2.43	4.45	30.27	27.03	0.93 11 36
1957	19.85	3.57	0.54	0.52	0.64	0.62	0.62	2.28	3.16	1.86	4.33	3.03
1958	1.44	0.90	0.54	0.52	0.52	0.52	3.89	14.22	7.97	1.96	18.23	7.22
1959	1.80	0.94	0.54	0.52	0.54	0.52	0.54	1.56	4.14	2.93	1.80	1.77
1960	1.19	0.58	0.54	1.01	0.64	0.52	0.52	1.36	1.82	2.52	4.13	3.56
1961	1.92	0.85	0.52	0.52	0.52	0.54	1.18	1.37	6.29	4.70	15.94	11.14
1962	16.19	4.01	0.55	0.54	0.52	0.52	0.52	1.36	2.35	6.00	15.87	8.22
1903	2 44	4 01	0.34	0.52	0.50	0.54	1 17	2 19	1.98	2.69	2 90	1 96
1965	1.51	1.00	0.73	0.54	0.52	0.74	0.77	1.39	1.70	3.72	5.22	6.70
1966	1.61	0.62	0.52	0.52	0.52	0.52	3.37	2.67	4.10	4.54	3.99	2.63
1967	1.71	1.23	0.54	0.54	0.56	0.52	0.62	3.08	4.88	8.19	16.73	2.93
1968	4.70	1.49	0.54	0.54	0.54	0.54	0.67	1.34	2.07	2.20	2.63	2.60
1969	2.74	1.47	0.54	0.52	0.52	0.52	0.52	1.48	3.56	4.38	5.26	3.56
1970	1.00	1.06	0.75	0.54	0.52	0.52	0.52	2.46	2 30	4.00	4.71	2.07
1972	1.06	0.03	0.37	0.20	0.23	0.00	0.25	0.62	0.78	3.90	3.40	3.03
1973	1.81	0.70	0.37	0.25	0.23	0.21	0.21	2.28	2.87	2.48	18.61	20.87
1974	8.15	2.43	0.54	0.52	0.52	0.52	0.54	2.61	2.88	6.20	18.46	2.75
1975	1.57	1.00	0.54	0.52	0.54	0.52	0.60	1.39	6.98	10.22	8.04	7.24
1976	1.87	6.36	3.64	0.67	0.54	0.55	2.44	9.39	29.55	34.09	32.06	14.82
1977	2.09	0.76	0.54	0.52	0.52	0.54	0.57	1.34	0.77 4.18	2.19	2.65	3.74 2.99
1979	4.07	2.05	0.54	0.52	0.56	0.52	0.80	2.01	3.76	2.43	1.98	1.53
1980	1.28	2.45	1.62	2.32	1.33	0.55	1.27	1.36	0.90	4.71	12.64	19.35
1981	2.30	0.85	0.54	0.52	0.52	0.52	1.34	1.37	2.01	2.03	2.22	1.81
1982	1.19	0.72	0.69	0.54	1.18	0.94	0.54	4.09	7.33	16.44	13.82	18.45
1983	2.16	0.70	0.52	0.52	0.54	0.54	0.67	5.47	4.16	3.00	4.79	16.68
1904	1.96	2.24	0.54	0.90	0.54	0.90	1.09	1.39	2.93	4.04	34 13	16.26
1986	1.47	0.85	0.54	0.52	0.54	0.52	0.86	2.88	4.23	3.69	13.54	13.10
1987	1.75	0.56	0.75	0.52	0.52	0.52	0.90	1.79	3.64	4.06	2.49	3.58
1988	1.49	1.01	0.52	0.50	0.52	1.57	3.34	2.78	4.02	6.66	16.76	22.64
1989	4.77	2.63	0.61	0.52	0.58	0.54	2.61	5.13	10.88	24.15	18.09	1.46
1990	0.79	0.69	0.54	0.52	0.52	0.50	0.52	2.69	5.83	10.76	16.32	16.48
1991	0.00	2.30	0.54	0.52	0.54	0.52	1.43	3.49 2.95	13.11	21.47 47.48	16.47	1 42
1993	0.87	0.54	0.65	0.50	0.50	0.52	0.52	1.37	10.17	6.60	6.33	2.33
1994	1.35	0.58	0.52	0.52	0.52	0.52	0.54	2.24	3.72	6.06	10.55	1.75
1995	7.60	2.24	3.16	0.87	0.54	0.52	0.52	1.36	5.37	11.91	14.26	19.26
1996	22.69	8.63	2.44	0.63	0.52	0.52	0.52	2.26	5.74	3.05	11.41	1.58
1997	0.77	2.51	1.19	0.54	0.52	0.52	0.86	5.89	7.37	10.63	7.19	1.42
1998	2 17	0.79	0.52	0.60	0.52	0.52	0.54	1.41	3.05	3.94	2.50	4.03
2000	1.44	0.63	0.52	0.52	0.52	0.52	0.52	4.18	2.38	8.12	24.20	23.34
2001	1.70	1.00	0.54	1.44	0.62	0.52	0.54	2.01	4.67	4.70	14.76	2.39
2002	1.95	1.00	0.54	0.52	0.52	0.89	0.62	1.72	1.57	1.29	4.87	2.74
2003	1.85	0.86	0.54	0.54	0.54	0.52	0.52	1.34	2.12	3.90	4.33	1.42
2004	2.91	1.28	0.54	0.52	0.52	0.22	3.64	3.23	0.30	2.95	4.50	3.23
State 1	<0.15	State 2	0.15-1	State 3	1-10	State 4	10 - 20	State 5	> 20			

Table 5.8	Simulated monthly flows to the	Palmiet Estuary for Scenario 4 (m ³ s ⁻¹)	
-----------	--------------------------------	--	--

YEAR	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1928	2.41	1.00	1.00	0.52	0.52	0.26	1.52	2.72	3.39	10.94	12.33	6.11
1929	1.24	1.00	1.00	0.39	0.47	0.50	1.00	1.00	1.36	2.73	5.79	13.43
1930	6.50	1.81	1.00	0.31	0.34	0.28	2.67	3.36	2.00	5.84	15.72	13.32
1931	F 00	2.07	1.00	0.40	0.80	0.55	1.00	3.18	1.72	9.88	8.39	13.22
1932	2.90	1.07	1.00	0.33	0.31	0.29	1.00	1.43	2 13	12.23	10.19	0.30 8.08
1933	8 51	1.00	1.00	0.20	0.33	0.32	1.00	4 35	5.02	6.76	5.60	6.03
1935	2 42	1.77	1.00	0.27	0.27	0.40	1.02	2 91	3.65	5 44	10 54	6.76
1936	2.12	1.81	1.38	0.71	0.34	0.38	1.00	2.91	16.62	22.60	13.65	5.66
1937	2.79	1.07	1.00	0.52	0.49	0.37	1.62	4.10	2.87	4.18	7.88	12.28
1938	4.95	1.37	1.00	0.31	0.80	0.65	1.15	3.28	2.09	5.23	12.15	6.03
1939	1.62	1.23	1.00	0.34	1.15	0.84	2.94	4.28	9.00	7.08	5.82	8.32
1940	2.39	2.52	1.00	0.61	0.51	0.30	4.27	11.09	18.35	20.38	16.95	30.52
1941	11.89	2.33	1.00	0.57	0.52	0.52	1.00	3.95	19.96	9.12	13.54	5.83
1942	1.54	1.00	1.00	2.38	1.61	0.62	1.45	1.95	4.53	8.92	16.38	7.67
1943	3.98	1.45	1.00	0.33	0.32	0.28	1.00	4.18	21.41	22.70	25.72	22.43
1944	6.63	1.49	1.00	0.52	0.27	0.24	1.00	10.37	22.02	42.41	29.31	5.97
1945	6.17	1.98	1.00	0.52	0.30	0.97	1.37	1.66	2.87	4.66	8.32	12.08
1946	2.99	1.00	1.00	0.26	0.26	0.92	1.00	1.98	3.81	18.08	9.14	5.42
1947	1.80	1.01	1.00	0.28	0.30	0.48	1.00	1.30	4.03	9.01	7.35	7.40
1940	0.23	2.05	1.00	0.32	0.02	0.23	1.40	2.43	3.93 1.72	12.02	10.00	7.13
1949	5.83	7.89	2 38	0.33	0.20	0.24	2.37	4 34	19 41	22.03	15 76	26.53
1951	7 01	2.76	1.00	0.73	0.52	0.32	1.00	2 16	2 34	6.61	16 59	10.67
1952	5.97	1.82	1.00	0.35	0.29	0.10	3 38	7.87	5.80	12.46	15.16	4 00
1953	1.99	1.98	1.00	0.52	0.31	0.33	1.07	10.81	15.18	37.69	36.06	13.39
1954	3.24	1.67	1.00	0.37	4.20	2.28	1.39	1.32	3.03	17.12	29.08	15.51
1955	9.91	2.99	1.00	0.52	0.54	0.41	1.00	4.84	9.39	11.09	12.21	5.94
1956	3.24	1.24	1.00	0.52	0.69	0.80	1.19	7.96	20.45	30.08	26.88	12.50
1957	19.73	3.77	1.00	0.52	0.80	1.12	1.00	5.51	7.44	3.19	9.48	9.82
1958	3.47	1.31	1.00	0.34	0.33	0.36	5.23	18.42	9.67	4.78	20.30	8.40
1959	4.03	1.44	1.00	0.52	0.29	0.34	1.00	2.79	8.95	5.32	5.07	3.79
1960	1.89	1.00	1.00	1.28	0.81	0.30	1.00	1.09	4.06	5.25	13.11	11.06
1961	3.66	1.07	1.00	0.28	0.36	0.51	1.49	1.28	17.04	14.67	26.29	10.28
1962	16.13	4.17	1.00	0.54	0.52	0.52	1.00	1.36	3.91	13.24	25.08	1.22
1903	1.90	1.20	1.00	0.34	0.50	0.40	1.00	1.00	7.03	8.57	20.64	9.30
1904	4.00	4.10	1.00	0.52	0.57	1.15	1.0/	3.83	4.70	0.40	9.00	4.18
1905	2.20	1.30	1.00	0.53	0.34	0.73	1.01	2.32	0 /1	9.06	8.04	5.40
1967	5.61	1.00	1.00	0.32	0.27	0.33	1.00	5 39	9.41	10.07	16.96	5.03
1968	6.11	1.70	1.00	0.57	0.58	0.74	1.19	1.34	4.29	5.43	7.69	6.37
1969	5.88	1.86	1.00	0.28	0.35	0.30	1.00	1.88	7.15	9.89	19.79	8.78
1970	3.77	1.40	1.00	0.54	0.33	0.29	1.00	1.05	2.70	8.86	13.23	6.42
1971	2.13	1.00	1.00	0.36	0.55	0.48	2.01	4.79	5.24	4.58	8.95	6.32
1972	1.38	1.00	1.00	0.34	0.29	0.25	1.00	1.00	1.00	5.87	6.19	6.52
1973	2.81	1.00	1.00	0.32	0.29	0.27	1.00	2.93	4.33	3.93	37.30	20.83
1974	8.91	2.61	1.00	0.52	0.52	0.27	1.00	4.25	6.41	13.81	16.78	5.72
1975	3.55	1.38	1.00	0.52	0.32	0.39	1.00	1.87	11.60	14.62	11.75	10.11
1970	4.40	8.99	3.80	0.86	0.66	0.82	2.37	10.13	29.35	33.90	31.90	14.78
1977	3.23 5.27	1.00	1.00	0.35	0.35	0.45	1.00	1.00 5.16	1.52	4.17	10.81	9.00
1970	0.37	1.40	1.00	0.44	0.40	1.00	1.00	2.10	7.94	7.00	7.00	0.00
1980	2 94	6.52	3 51	4 17	1 73	0.32	3 17	1.85	2 78	14 30	22 50	17.63
1981	3.84	1 23	1.00	0.52	0.52	0.01	1 70	1.59	4 16	4 67	7.06	5 17
1982	2.27	1.00	1.00	0.57	1.49	1.30	1.00	6.27	19.51	22.71	14.89	18.37
1983	3.67	1.00	1.00	0.52	0.30	0.44	1.00	10.40	8.17	9.91	5.88	16.61
1984	12.21	2.45	2.79	1.19	1.57	2.94	4.35	2.42	5.79	17.17	21.00	7.91
1985	4.48	1.62	1.00	0.52	0.57	1.26	1.90	2.29	6.71	12.25	32.25	16.27
1986	2.65	1.23	1.00	0.52	0.54	0.52	1.38	5.34	7.89	10.58	16.59	13.04
1987	3.15	1.53	1.00	0.30	0.09	0.29	1.13	2.53	6.72	10.37	7.80	10.88
1988	2.66	1.41	1.00	0.08	0.18	1.98	4.61	4.89	9.39	11.49	18.92	22.90
1989	6.32	2.81	1.00	0.52	0.72	0.88	3.17	1.6/	10.79	23.95	16.07	6.06
1990	1.23	1.02	1.00	0.16	0.18	0.03	1.00	3.56	9.85	18.61	16.29	10.37
1991	0.41 17.1/	2.50	1.00	0.52	0.37	0.33	2.07	7.12	23.93	Z1.29 //6.02	14.83	12.00 5.2F
1992	1 22	3.42	1.00	0.52	0.74	0.28	1.40	1.08	20.07	40.93	10.40	0.20
199/	2.83	1.00	1.00	0.10	0.00	0.14	1.00	2 92	8.07	12.63	16.03	5 29
1995	8.52	2.39	3.29	1.17	0.54	0.52	1.00	2.23	9.02	15.00	14.16	19.16
1996	22.68	8.72	2.63	0.80	0.52	0.63	1.00	3.12	15.65	8.99	12.32	4.89
1997	1.21	5.36	1.50	0.57	0.52	0.25	1.08	8.77	9.08	12.96	10.22	4.35
1998	1.54	5.40	2.06	0.76	0.52	0.52	1.00	2.60	6.40	8.51	10.14	9.93
1999	3.64	1.07	1.00	0.47	0.09	0.71	1.00	1.77	5.22	6.65	8.57	10.92
2000	2.71	1.00	1.00	0.26	0.39	0.16	1.00	5.71	4.75	19.94	26.07	23.23
2001	2.88	1.35	1.00	1.82	0.79	0.52	1.63	3.70	8.30	10.17	15.82	5.15
2002	4.74	1.47	1.00	0.32	0.29	1.12	1.00	3.14	3.55	3.08	10.83	6.02
2003	4.71	1.11	1.00	0.48	0.24	0.27	1.00	1.00	3.81	6.4/	9.41	4.80
2004	0.20	1.03	1.00	0.35	0.27	0.16	4.8/	5.3	13.81	7.91	10.72	0.33
State 1	<0.15	State 2	0.15.1.0	State 2	1 0 10	State /	10 20	Stato 5	. 20			

Table 5.9	Simulated monthly flows to the Palmiet Estuary for Scenario 6 (m ³ s ⁻¹)

5.2.6 Hydrology

This section describes the changes in the hydrology for the scenarios.

5.2.6.1 Low flows

	MAR 185.2 million m ³ , a reduction of 27.8 % compared to Reference Condition.
Scenario 1	For the Palmiet Estuary, low flows are defined as months in which river inflow to the estuary is less than 1.0 m ³ s ⁻¹ i.e. flows representative of State 1 (closed mouth) and State 2 (semi-closed). Months with flows of less than 1.0 m ³ /s occurred under the Reference Condition for 10.5 % (~1 month) of the year. Under the Scenario 1 low flows occur for 35.2 % (~4 months) of the year. Occurrence of large flows based on daily flow analyses: 58 % similar. Reduction in magnitude based on average monthly flows: 84 % similar.
Scenario 2	MAR 161.3 million m ³ , a reduction of 37.1 % compared to Reference. Low flows occur for 36.6 % (~4.5 months) of the year. Occurrence of large flows based on daily flow analyses: 43 % similar. Reduction in magnitude based on average monthly flows: 76 % similar.
Scenario 3	MAR 148.7 million m ³ , a reduction of 42.0 % compared to Reference. Low flows occur for 37.2 % (~4.5 months) of the year. Occurrence of large
	flows based on daily flow analyses: 41 % similar. Reduction in magnitude based on average monthly flows: 74 % similar.
Scenario 4	MAR 111.18 million m [°] , a reduction of 56.6 % compared to Reference. Low flows occur for 41.9 % (~5 months) of the year. Occurrence of large
Scenario 5	Similar to Present State
	MAR 161.9 million m ³ , a reduction of 36.8 % compared to Reference. Low flows occur for 22.8 % (~2.5 months) of the year. Occurrence of large
	flows based on daily flow analyses: 43 % similar. Reduction in magnitude based on average monthly flows: 76 % similar.
Scenario 6	Note: Scenario 6 was generated at the workshop (i.e. manipulation of the baseflows in a spread sheet model), in reality if more baseflows were to
	be released to the Palmiet Estuary there would be a small reduction in floods to the system as some of the dams will be less full. As the Palmiet
	Estuary is a small system and scours relatively easily this effect was seen as negligible for evaluation purposes.

Lowflow Scoring Formula: 100 – (% Reference -% Present) DWAF (2004) Floods Scoring Formula: % Change in occurrence (2/3) +% Change in magnitude (1/3)

5.2.6.2 Floods

Scenario	a.% s	imilarity i MA	in period of low flows OR MAR as a % of R in the Reference Condition	b.%	b.% similarity in mean annual frequency and magnitude of floods						
	Score	L/M/H	Summary of change	Score	L/M/H	Summary of change	score				
Present	74	Н	1 25.9 % in low flow conditions	56	L	Frequency: 0,55 Magnitude: 0,24	67				
1	75	Н	1 24.7 % in low flow conditions	67	L	Frequency: \$42 Magnitude: \$16	72				
2	74	Н	1 26.1 % in low flow conditions	54	L	Frequency: 0,57 Magnitude: 0,24	66				
3	73	Н	1 26.7 % in low flow conditions	52	L	Frequency: 0,59 Magnitude: 0,26	65				
4	69	Н	1 31.4 % in low flow conditions	40	L	Frequency: \$73 Magnitude: \$37	57				
5	74	Н	1 25.9 % in low flow conditions	56	L	Frequency: 0,55 Magnitude: 0,24	67				

	6	88	Н	12.2 % in low flow conditions	54	L	Frequency: 0.57 Magnitude: 0.24	74
--	---	----	---	-------------------------------	----	---	---------------------------------	----

5.2.7 Hydrodynamics and mouth condition

This section describes the changes in the mouth conditions for the different run-off scenarios.

Scenario 1	Extended periods of mouth closure (State 1) only occurred for very short periods of the time (0.1 %) under the Reference Condition and increased slightly to 0.8 % of the time under Scenario 1. While State 2 (semi-closed) increased by 24.0 % from the Reference Condition to Scenario 1. The mouth is closed or semi-closed for 35.2 % (~5 months) of the time.
Scenario 2	Extended periods of mouth closure (State 1) only occurred for very short periods of the time (0.1 %) under the Reference Condition and increased slightly to 0.8 % of the time under Scenario 2. While State 2 (semi-closed) increased by 25.4 % from the Reference Condition to Scenario 2. The mouth is closed or semi-closed for 36.6 % (~5 months) of the time.
Scenario 3	Extended periods of mouth closure (State 1) only occurred for very short periods of the time (0.1 %) under the Reference Condition and increased slightly to 0.4 % of the time under Scenario 3. While State 2 (semi-closed) increased by 26.4 % from the Reference Condition to Scenario 3. The mouth is closed or semi-closed for 37.2 % (~5 months) of the time.
Scenario 4	Extended periods of mouth closure (State 1) will not occur. While State 2 (semi-closed) increased by 31.5 % from the Reference Condition to Scenario 4. The mouth is closed or semi-closed for 41.9 % (~6 months) of the time.
Scenario 5	Similar to Present State.
Scenario 6	Extended periods of mouth closure (State 1) only occurred for very short periods of the time (0.1 %) under the Reference Condition and increased
	slightly to 0.8 % of the time under Scenario 2. While State 2 (semi-closed) increased by 11.6 % from the Reference Condition to Scenario 2. The
	mouth is closed or semi-closed for 22.7 % (~2.5 months) of the time.

Note: method scores mouth closure conservatively following the guidelines provided in DWAF (2004)

Seenario	Change in mean duration of closure over 77-year period in relation to the Reference Conditions										
Scenario	Score	L/M/H	Summary of change								
Present	46	М	State 1: ① 0.7 % and State 2: ① 25.2 %	46							
1	47	М	State 1: ① 0.7 % and State 2: ① 24.0 %	47							
2	43	М	State 1: ① 0.7 % and State 2: ① 25.4 %	43							
3	43	М	State 1: ① 0.3 % and State 2: ① 26.4 %	43							
4	36	М	State 1: 4 0.1 % and State 2: 1 31.5 %	36							
5	46	М	State 1: ① 0.7 % and State 2: ① 25.2 %	46							
6	77	М	State 1: ① 0.7 % and State 2: ① 11.6 %	77							

5.2.8 Water quality

5.2.8.1 Salinity

The change in salinity was calculated based on two conditions, change in the average salinity and change in the structure of the Palmiet Estuary. Change in the average salinity was calculated as the average salinity per state for a zone (lower surface, upper surface, lower bottom and upper bottom) multiplied by the % occurrence of the state. Change in structure was calculated on the loss of State 3 and 4, which represents the highly stratified states.

			Α	verage s	alinity (p	opt)								
	St		Referenc	e		Scenario	1		Refe	erence:	Sc	enar	io 1	
	0.	%			%									
		/0	15	15		E	5		13	10		10	8	
	1	0.1	30	30	0.8	5	5 15							
			15	15		5	5		28	22		21	18	
Scenario 1	2	10.4	20	25	34.4	15	10							
	3	58.7	20	15	13.2	20	15							
	3	30.7	35	30	4J.2	35	30	There v	vas an	average of	change	in sa	inity of a	bout 4 %.
	4	20.6	0	0	15.7	0	0							
			25	10		25	10							
	5	10.3	0	0	6.0	0	0							
	L		Ů	Ū	1	, °	Ū							
	State	3 and	4 decre	eased f	rom 79	% unde	er the R	eference Condi	tion to !	59 % und	er the S	cena	rio 1 i e	20 % char
	Olalo	o ana	1 40010		011110	/o arras						00110		20 /0 01101
		Average salinity (ppt)												
		Reference			Scenario	2								
	St		Kelerenc	e 	0/		r							
		%	L	U	%	L	U	F	Referen	nce:	Scena	ario 2		
	1	0.1	15	15	0.8	5	5							
			30	30		5	15	1	3 1	10	11	6		
Sconario 2	2	10.4	20	25	35.8	15	10							
Scenario z		50.7	20	15	40.0	20	15	2	28 2	22	21	1	9	
	3	58.7	35	30	46.6	35	30							
	4	20.6	0	0	124	0	0							
	-	20.0	25	10	12.7	25	10	Thorowson		ana ahan	ao in oc	1:0:4.	of about	2 4 0/
			-	^				i nere was a	····		00 IN S2	IIITV	or anolli	J.4 %.
	5	10.3	0	0	4.3	0	0		anaven	age chang	go in oc	unity	or about	
	5	10.3	0 0	0	4.3	0	0			aye chan	go in oc	unney		
	5	10.3	0 0	0	4.3	0	0				go 11 00			00.04 -1

	State	3 and 4 decreased	from 79 % under the R	Reference Condition to 59 % under the Scenario 3, i.e. 20 % change
	Cialo			
		Average	e salinity (ppt)	
	St	Reference	Scenario 3	
		% L U	% L U	Reference: Scenario 3
0	1	0.1 15 15	0.4 5 5	
Scenario 3	2	10.4 15 15	36.8 5 5	
	-	20 25	15 10 18 2 20 15	28 22 21 19
		35 30 0 0	48.3 35 30	
	4	20.6 25 10	10.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	There was an average change in salinity of about 3.1 %.
	5	10.3 0 0	4.2 0 0	
	State	3 and 4 decreased	from 79 % under the R	Reference Condition to 55 % under the Scenario 4, i.e. 24 % change.
		Average	e salinity (ppt)	
Scenario 4	St	Reference	Scenario 4	
		% L U	% L U	Reference: Scenario 4
	1	0.1 15 15	0.0 5 5	
	2	10.4 15 15	41.9 5 5	
	2	20 25 59 7 20 15	<u> </u>	28 22 21 19
		35 30 0 0	40.3 35 30	
	4	20.6 25 10	6.8 <u>0</u> 0	There was an average change in salinity of about 3.2 %.
	5	10.3 0 0	3.0 0 0	
Scenario 5	Simil	ar to Present		
	State	3 and 4 decreased	from 70 % under the F	Peference Condition to 73 % under the Scenario 6, i.e. 6 % change
	State			celetence condition to 75 % under the Scenario 0, i.e. 0 % change.
		Average	e salinity (ppt)	
	St	Reference		
		% L U		Reference: Scenario 6
Scenario 6	1	0.1 30 30	0.8 5 15	13 10 13 10
	2	10.4 15 15 20 25	22.0 5 5 10	
	3	58.7 20 15	60.5 20 15	28 22 25 22
	4	20.6 0 0	12.4 0 0	There was an average change in colinity of shout 0.8.%
	5	25 10 10.3 0 0	<u> </u>	There was an average change in saminity of about 0.0 %.
	Ĭ	0 0	0 0	

5.2.8.2 DIN/DIP, SS/Turbidity/ Transparency, DO and Toxic substances

Scoring of scenarios followed a similar approach as described in Chapter 3.4.1.3 for the Present State

Scenario	1. Iongi gradi s	Changes in itudinal salinity ent and vertical tratification	2a.	DIN/DIP in estuary	2b. S <u>Tran</u>	S/Turbidity/ sparency in estuary	2c. D	O in estuary	2d. Tox	Overall score	
	Score	Summary of change	Score	Summary of change	Score	Summary of change	Score	Summary of change	Score	Summary of change	
Present	76 M/H	20 % ∜stratified 4 % ∜Salinity	74 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	91 M/H	Summer (surface and bottom, upper estuary)	85 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	74.8
1	76	20 % ∜stratified 4 % ∜Salinity	72 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	88 M/H	Summer (surface and bottom, upper estuary)	85 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	73.6
2	76	20 % ∜stratified 4 % ∜Salinity	75 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	91 M/H	 Usurface and bottom, upper estuary) 	84 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	75.4
3	76	20 % ∜stratified 4 % ∜Salinity	76 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	92 M/H	Summer (surface and bottom, upper estuary)	84 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	76
4	73	24 % ∜stratified 3 % ∜Salinity	78 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	92 M/H	 Usurface and bottom, upper estuary) 	82 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	76
5	76	20 % ∜stratified 4 % ∜Salinity	85 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	91 M/H	Summer (surface and bottom, upper estuary)	85 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	81.4
6	79	6 % ∜stratified 0.8 % ∜Salinity	72 M/H	 ♣ Summer (bottom) ☆ Summer (surface) ☆ Winter (overall) 	99 M/H	Summer (surface and bottom, upper estuary)	91 M/H	♣ Summer (bottom)	90 L	ûOverall accumulation	74.8

5.2.9 Physical habitat alteration

This section describes the changes in the hydrology for the scenarios

Scenario 1	Intertidal area: 10% loss due to infilling in mouth region and a 20% loss due to increased semi-closed mouth conditions. Sand/mud fraction: The system is becoming slightly more coarse grain due to an increase in marine sediment. Subtidal: 30% decrease mostly in the mouth area and middle reaches, 11% deepening in upper estuary due to trapping of catchment sediment.
Scenario 2	Intertidal area: 10 % loss due to infilling in mouth region and a 20 % loss due to increased semi-closed mouth conditions. Sand/mud fraction: The system is becoming slightly more coarse grain due to an increase in marine sediment. Subtidal: 30 % decrease mostly in the mouth area and middle reaches, û1 % deepening in upper estuary due to trapping of catchment sediment.
Scenario 3	Intertidal area: 10 % loss due to infilling in mouth region and a 20 % loss due to increased semi-closed mouth conditions. Sand/mud fraction: The system is becoming slightly more coarse grain due to an increase in marine sediment. Subtidal: 30 % decrease mostly in the mouth area and middle reaches, 11 % deepening in upper estuary due to trapping of catchment sediment.
Scenario 4	Intertidal area: 15 % loss due to infilling in mouth region and a 30 % loss due to increased semi-closed mouth conditions. Sand/mud fraction: The system is becoming slightly more coarse grain due to an increase in marine sediment. Subtidal: 40 % decrease mostly the mouth area and middle reaches, û1 % deepening in upper estuary due to trapping of catchment sediment.
Scenario 5	Similar to Present State
Scenario 6	Similar to Scenario 2

	1. Resem	blance of	intertidal sediment struc	cture and distribution to reference condition			2. Rese	mblance o	of submerged estuary to	
Scenario	a. % similarity in intertidal area exposed % similarity in intertidal area exposed total sand and mud				Reference Condition: depth, bed or channel morphology (i.e. based on subtidal habitat, channel morphology, and taking degree of sedimentation, and obstruction or constriction into account)			Overall score		
	Score	L/M/H	Summary of change	Score	L/M/H	Summary of change	Score	L/M/H	Summary of change	
Present	70	L	₽ 30 %	100	м	No change	70	L		77.5
1	70	L	₽ 30 %	100	М	No change	70	L		77.5
2	70	L	₽ 30 %	100	М	No change	70	L		

3	70	L	₽ 30 %	100	М	No change	70	L	₽29 % lower reaches 1 % deepening in upper estuary	77.5
4	55	L	ֆ 45 %	100	М	No change	60	L	0 39 % 1 % deepening in upper estuary	68.75
5	70	L	ֆ 30 %	100	М	No change	70	L	 ₽29 % lower reaches 1 % deepening in upper estuary 	77.5
6	70	L	₽ 30 %	100	М	No change	70	L	 ₽29 % lower reaches 1 % deepening in upper estuary 	77.5

5.3 BIOTIC COMPONENTS

Predict the change in biotic characteristics of the Scenarios compared with the Reference Condition, list the <u>causes</u> of these changes and provide the confidence (H/M/L) in the predictions. Apply the guidelines for the EHI scoring:

5.3.1 Microalgae

This section describes the changes in microalgae for the different run-off scenarios

Scenario 1 - 6	The major factors affecting phytoplankton biomass and composition are the increase in nutrients (↑ in chl-a), an increase in the frequency/duration of mouth closures (↓ in chl-a and shift in community composition) and the reduction in the frequency/duration of stratified conditions (↓ in chl-a); nutrients, mouth closure and stratification. The major factors affecting benthic microalgal biomass and composition are the reduction in high flows (States 1 and 2; ↑ in chl-a), an increase in nutrients (↑ in chl-a), a loss of intertidal habitat (↓ in chl-a and shift in community composition) and a loss of water transparency in State 3 (↓ in chl-a); high flows, nutrients, intertidal habitat and transparency.
----------------	---

5.3.1.1 Phytoplankton

Scenario	1. S (% sin	Species richness nilarity in brackets)		2a. Abundance		2b.Community composition
	Score	Summary of change	Score	Summary of change	Score	Summary of change
Present	100 (100 %) L	Unlikely to lose species.	92 M	Nutrients ($\hat{1}$: 38 % increase), mouth closure (\mathbb{A} : 26 % increase in States 1 and 2) and stratification (\mathbb{A} : 20 % decrease in States 3 and 4). 8 % \mathbb{A} in biomass.	74 M	Mouth closure (\mathbb{Q} : 26 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 26 % change in community composition.
1	100 (100 %) L	Unlikely to lose species.	100 M	Nutrients ($\hat{1}$: 45 % increase), mouth closure ($\hat{4}$: 24.7 % increase in States 1 and 2) and stratification ($\hat{4}$: 20 % decrease in States 3 and 4). No change in biomass.	75 M	Mouth closure (\oplus : 25 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 25 % change in community composition.
2	100 (100 %) L	Unlikely to lose species.	91 M	Nutrients (\hat{U} : 37 % increase), mouth closure (ϑ : 26.1 % increase in States 1 and 2) and stratification (ϑ : 20 % decrease in States 3 and 4). 9 % ϑ in biomass.	74 M	Mouth closure (ϑ : 26 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 26 % change in community composition.
3	100 (100 %) L	Unlikely to lose species.	89 M	Nutrients (\hat{U} : 36 % increase), mouth closure (ϑ : 26.7 % increase in States 1 and 2) and stratification (ϑ : 20 % decrease in States 3 and 4). 11 % ϑ in biomass.	73 M	Mouth closure (ϑ : 27 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 27 % change in community composition.
4	100 (100 %) L	Unlikely to lose species.	79 M	Nutrients (1: 34 % increase), mouth closure (4: 31.4 % increase in States 1 and 2) and stratification (4: 24 % decrease in States 3 and 4). 21 % ♣ in biomass.	69 M	Mouth closure (\mathbb{Q} : 31 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 31 % change in community composition.
5	100 (100 %) L	Unlikely to lose species.	73 M	Nutrients ($\hat{1}$: 19 % increase), mouth closure (\mathbb{Q} : 26 % increase in States 1 and 2) and stratification (\mathbb{Q} : 20 % decrease in States 3 and 4). 27 % \mathbb{Q} in biomass.	74 M	Mouth closure (\mathbb{Q} : 26 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 26 % change in community composition.
6	100 (100 %) L	Unlikely to lose species.	94	Nutrients ($\hat{1}$: 38 % increase), mouth closure (ϑ : 12.3 % increase in States 1 and 2) and stratification (ϑ : 20 % increase in States 3 and 4). 6 % $\hat{1}$ in biomass.	88	Mouth closure (\mathbb{Q} : 12.3 % increase in States 1 and 2): Dinoflagellates \rightarrow cyanophytes. 12 % change in community composition.

5.3.1.2 Benthic microalgae

Scenario	1. S (% sin	Species richness nilarity in brackets)		2a. Abundance		2b.Community composition
	Score	Summary of change	Score	Summary of change	Score	Summary of change
Present	100 (100 %) L	Unlikely to lose species.	86 % M	Reduced high flows ($\hat{1}$ 14 %: 20.6 – 12.4 and 10.3 – 4.8), elevated nutrients ($\hat{1}$: 38 % x 0.5), loss of intertidal habitat ($\hat{4}$ 26 % x 0.5) and loss of water transparency during State 3 ($\hat{4}$ 12.3 % x 0.5): 14 % $\hat{1}$ in biomass. (Note that vector arrows denote chl-a response)	74 % M	States 1 and 2 (26 % change): mobile species (e.g. pennate diatoms and euglenophytes) → attached taxa.
1	100 (100 %) L	Unlikely to lose species.	89 % M	Reduced high flows ($\hat{1}$ 9 %: 20.6 – 15.7 and 10.3 – 6.0), elevated nutrients ($\hat{1}$: 45 % x 0.5), loss of intertidal habitat ($\hat{1}$ 24.7 % x 0.5) and loss of water transparency during State 3 ($\hat{1}$ 15.5 % x 0.5): 11 % $\hat{1}$ in biomass.	75 % M	States 1 and 2 (24.7 % change)
2	100 (100 %) L	Unlikely to lose species.	86 % M	Reduced high flows ($\hat{1}$ 14 %: 20.6 – 12.4 and 10.3 – 4.3), elevated nutrients ($\hat{1}$: 37 % x 0.5), loss of intertidal habitat ($\hat{4}$ 26.1 % x 0.5) and loss of water transparency during State 3 ($\hat{4}$ 12.1 % x 0.5): 14 % $\hat{1}$ in biomass.	74 % M	States 1 and 2 (26.1 % change)
3	100 (100 %) L	Unlikely to lose species.	85 % M	Reduced high flows ($\hat{1}$ 16 %: 20.6 – 10.3 and 10.3 – 4.2), elevated nutrients ($\hat{1}$: 36 % x 0.5), loss of intertidal habitat ($\hat{1}$ 26.7 % x 0.5) and loss of water transparency during State 3 ($\hat{1}$ 10.4 % x 0.5): 15 % $\hat{1}$ in biomass.	73 % M	States 1 and 2 (26.7 % change)
4	100 (100 %) L	Unlikely to lose species.	82 % M	Reduced high flows ($\hat{1}$ 21 %: 20.6 – 6.8 and 10.3 – 3.0), elevated nutrients ($\hat{1}$: 36 % x 0.5), loss of intertidal habitat ($\hat{1}$ 31.4 % x 0.5) and loss of water transparency during State 3 ($\hat{1}$ 10.4 % x 0.5): 18 % $\hat{1}$ in biomass.	69 % M	States 1 and 2 (31.4 % change)
5	100 (100 %) L	Unlikely to lose species.	96 % M	Reduced high flows ($\hat{1}$ 14 %: 20.6 – 12.4 and 10.3 – 4.8), elevated nutrients ($\hat{1}$: 19 % x 0.5), loss of intertidal habitat ($\hat{4}$ 26 % x 0.5) and loss of water transparency during State 3 ($\hat{4}$ 12.3 % x 0.5): 4 % $\hat{1}$ in biomass. (Note that vector arrows denote chl-a response)	74 % M	States 1 and 2 (26 % change): mobile species (e.g. pennate diatoms and euglenophytes) → attached taxa.

Scenario	1. S (% sin	pecies richness nilarity in brackets)		2a. Abundance		2b.Community composition		
	Score	Summary of change	Score	Summary of change	Score	Summary of change		
6	100 (100 %) L	Unlikely to lose species.	72 % M	Reduced high flows ($\hat{1}$ 14.2 %: 20.6 – 12.4 and 10.3 – 4.3), elevated nutrients ($\hat{1}$: 38 % x 0.5), loss of intertidal habitat ($\hat{1}$ 12.3 % x 0.5) and increase in water transparency during State 3 ($\hat{1}$: 1.8 % x 0.5): 14 % $\hat{1}$ in biomass. (Note that vector arrows denote chl-a response)	88 % M	States 1 and 2 (12.3 % change): mobile species (e.g. pennate diatoms and euglenophytes) → attached taxa.		

Scenario	Minimum score species richness	Minimum score abundance	Minimum score community composition	Overall score
Present	100	86	74	74
1	100	89	75	75
2	100	86	74	74
3	100	85	73	73
4	100	79	69	69
5	100	73	74	73
6	100	72	88	72

This section provides a summary of the parameters used as a proxy for change for microalgae (based on parameter determining final score only).

Parameters	Present	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
States 1and2 / intertidal	û 26 %	☆ 25 %	û 26 %	☆ 27 %	<u></u>	1 26 %	û 12.3 %
Nutrients	압 38 %	압 45 %	압 37 %	압 36 %	☆ 34 %	① 19 %	û 38 %
Transparency	12.3 %	. 15.5 %	ֆ 12.1 %	 10.4 %	₽ 10.4 %	₽ 12.3 %	₽ 1.8 %
Stratification	₽ 20 %	₽ 20 %	₽ 20 %	₽ 20 %	₽ 24 %	ֆ 20 %	₽ 20 %

5.3.2 Macrophytes

This section describes the changes in macrophytes for the different run-off scenarios

Sconario 1	Macroalgae: 1 ha stand will persist for 35.2 % of the year (4.22 ha-months).
Scenario I	Reference Condition.
	Macroalgae: 1 ha stand will persist for 36.6 % of the year (4.39 ha-months).
Scenario 2	Macrophytes: 0.1 ha stand inundated with water for 36.6 % of the year (0.76 ha-months). Macroalgae + macrophytes ha-months 1/45 % similar to
	Reference Condition.
_	Macroalgae: 1 ha stand will persist for 37.2 % of the year (4.46 ha-months).
Scenario 3	Macrophytes: 0.1 ha stand inundated with water for 37.2 % of the year (0.75 ha-months). Macroalgae + macrophytes ha-months 1/45 % similar to
	Reference Condition.
	Macroalgae: 1 ha stand will persist for 41.9 % of the year (5.03 ha-months).
Scenario 4	Macrophytes: 0.1 ha stand inundated with water for 41.9 % of the year (0.70 ha-months). Macroalgae + macrophytes ha-months 1 41 % similar to
	Reference Condition.
· · ·	Macroalgae: 1 ha stand will persist for 36.4 % of the year (4.37 ha-months).
Scenario 5	Macrophytes: 0.1 ha stand inundated with water for 41.9 % of the year (0.76 ha-months). Macroalgae + macrophytes ha-months 1/45 % similar to
	Reference Condition.
	Macroalgae: 1 ha stand will persist for 22.8 % of the year (2.74 ha-months).
Scenario 6	Macrophytes: 0.1 ha stand inundated with water for 22.8 % of the year (0.93 ha-months). Macroalgae + macrophytes ha-months 164 % similar to
	Reference Condition.

ario	1. Species richness (% similarity in brackets)		2a. Abundance			2b.Community composition		
Sceni	Score	Summary of change	Score	Summary of change	Score	Summary of change	Over sco	
Present	80 (90 %) L	★ salinity → loss of salt tolerant salt marsh spp.	45 M	Macroalgae: 4.37 ha-months Salt marsh: 0.76 ha-months	69 M	Macroalgae:macrophyte (85:15)	45	
1	80 (90 %) L	"	47 M	Macroalgae: 4.22 ha-months Salt marsh: 0.78 ha-months	70 M	Macroalgae:macrophyte (84:16)	47	
2	80 (90 %) L	"	45 M	Macroalgae: 4.39 ha-months Salt marsh: 0.76 ha-months	69 M	Macroalgae:macrophyte (85:15)	45	

ario	1. Species richness (% similarity in brackets)		2a. Abundance			2b.Community composition		
Scen	Score	Summary of change	Score	Summary of change	Score	Summary of change	Over	
3	80 (90 %) L	"	45 M	Macroalgae: 4.46 ha-months Salt marsh: 0.75 ha-months	68 M	Macroalgae:macrophyte (86:14)	45	
4	80 (90 %) L	"	41 M	Macroalgae: 5.03 ha-months Salt marsh: 0.70 ha-months	66 M	Macroalgae:macrophyte (88:12)	41	
5	80 (90 %) L	"	45 M	Macroalgae: 4.37 ha-months Salt marsh: 0.76 ha-months	100 M	Macroalgae:macrophyte (85:15)	45	
6	80 (90 %) L	ű	64 M	Macroalgae: 2.74 ha-months Salt marsh: 0.93 ha-months	90 M	Macroalgae:macrophyte (75:25)	64	

This section provides a summary of the parameters used as a proxy for change for macrophytes

Parameters	Present	Future Scenario 1	Future Scenario 2	Future Scenario 3	Future Scenario 4	Future Scenario 5	Future Scenario 6
States 1and2 (- 10.5 % ref)	企 26 %	û 25 %	① 26 %	① 27 %	û 31 %	û 26 %	û 12.3 %
Droughts*		2-5 years	2-10 years	2-12 years	2-19 years	2-5 years	(?)
Nutrients*	① 38 %	û 45 %	① 37 %	☆ 36 %	☆ 34 %	① 19 %	û 38 %
Salinity*	₽4%	₽4%	₽4%	₽4%	₽3%	₽4%	₽4%(?)
Loss of intertidal zone*	₽ 20 %	ֆ 20 %	₽ 20 %	₽ 20 %	↓ 30 %	₽ 20 %	₽ 20 %

*Significant but not included in the scoring

5.3.3 Invertebrates

This section describes the changes in invertebrates for the different run-off scenarios

	The following discussion refers to the benthos only – zooplankton biomass in the estuary is naturally extremely low. Hyperbenthos also predicted to be low
Scenario 1	The occurrence of floods that would scour sediment (particularly the sandbank in the mouth area) from the estuary (flows >50 m ³ sec ⁻¹) reduced by 42 %. The sandbank at the mouth is more stable, supporting a relatively high biomass of the sandprawn <i>Callianassa kraussi</i> . Subtidally, there is a greater persistence of macrophytes and detrital material. This condition would persist under the present scenario. The increase in State 1 and 2 by approximately 35.2 % (State 2 approximately 34 % of this value) leads to less water exchange across the mouth, and reduced salinity values (to about 10 ppt) in the lower estuary because of dilution effects and limited marine inflow. There will be no recruitment from the <i>Callianassa kraussi</i> intertidal population during these months as 10 ppt is well below the threshold required for breeding. Recruitment will still be possible from subtidal populations, but this will be offset by increased macrophyte coverage (Sandprawns prefer unvegitated areas for colonization). Anoxic conditions will be similar to Present. Overall, biomass likely to reduce by about 5 % compared to Present, and therefore moves along a trajectory towards more natural conditions. This reduction likely to be a result of reduced recruitment success, aggravated by the salinity values that now hover around the salinity threshold required for breeding.
Scenario 2	Very similar to above Scenario, and the slight decrease in States 1 and 2 (by approximately 1 %) compared to Scenario 1, will increase anoxic conditions as described above by a very small margin. The frequency and amplitude of floods will decrease further (by 15 and 10 respectively) compared to the previous scenario, and the intertidal sandbank will be less frequently removed (more stable as a habitat for burrowing invertebrates). Persistent stratification will exacerbate oxygen exchange with bottom waters.
Scenario 3	Very similar to Scenario 2, and the slight increase in States 1 and 2 (by approximately 1 %) compared to Scenario 2, will exacerbate anoxic conditions as described above by a very small margin. This is offset by the increase in State 3 compared to Scenario 2 (by approximately 2 %), and this will reduce the occurrence of anoxic conditions. Biomass of the subtidal benthos will therefore be less prone to mortality events – overall, biomass will be more stable and, on average remain at higher levels compared to the previous scenario.
Scenario 4	Very similar to Scenario 3, and the increase in States 1 and 2 (by approximately 4.5%) compared to Scenario 3, will exacerbate anoxic conditions as described above. This is offset by a similar increase in State 3 compared to Scenario 3 (approx. 2%), leading to an increase in stagnation and anoxia overall, compared to the previous scenario. The most significant change under this scenario is the frequency and amplitude of larger floods - by approx 14% and 11% respectively compared to Scenario 3. Biomass of the subtidal benthos will therefore be less prone to mortality events and the sandbank is more stable – overall, invertebrate biomass will also be more stable and, on average remain at higher levels compared to the previous scenario and much higher compared to natural.
Scenario 5	Since zooplankton biomass is typically low in blackwater systems, removal of nutrients is unlikely to impact this component to any degree (minimal impact), so that the only component of the invertebrates to be influenced would be the benthos. Since the nutrient levels are reduced considerably, phytoplankton and macrophyte biomass would also reduce and so lead to less food availability. Consequently, invertebrate biomass would also reduce to more natural levels.
Scenario 6	Because of improved flow conditions, this scenario would lead to improved oxygen levels, However, low salinity levels that would move closer to the threshold required for <i>Callianassa kraussi</i> breeding purposes and therefore recruitment to the benthic population would decline. This moves biomass of the key benthic species closer to natural conditions.

5.3.3.1 Zooplankton

1. Species richness (% similarity in brackets)			2a. Abundance	2b.Community composition		
Scenario	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change
Present	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
1	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
2	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
3	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
4	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
5	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change
6	100 L	No change	90 L	10 % increase above natural, less frequent scouring of estuary. Abundance also very low, even under natural conditions	100 L	No change

5.3.3.2 Benthic invertebrates

Coorregio	Species richness (% similarity in brackets)		2a. Abundance			2b.Community composition			
Scenario	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change			
Present	100 L	No change	65 L	There is an increase in intertidal area by about 10 % (lower sandbank) and increased food availability in form of detritus and greater persistence of the macrophytes on average. Overall, biomass about 135 % of natural.	65 L	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community.			
1	100 L	No change	70 L	There is an increase in intertidal area by about 10 % (lower sandbank) and increased food availability in form of detritus (10 %). However, there is likely to be a reduction in recruitment success to the estuarine population because salinity values now hover around the breeding threshold – moving along a trajectory towards the natural state. Biomass will be more variable and hence more similar to the natural state.	70 L	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community. Recruitment however, will be more variable under this scenario, moving along a trajectory that approached the natural condition.			
2	100 L	No change	65 L	There is an increase in intertidal area by about 10 % (lower sandbank) and increased food availability in form of detritus (10 %). However, there is likely to be a reduction in recruitment success to the estuarine population because salinity values now hover around the breeding threshold – moving along a trajectory towards the natural state. The marginal increase in State 2, compared to Scenario 1 (by 1 %), is also likely to lead to a marginal shift or increase in anoxic conditions. Frequency and amplitude of floods also reduced (by 15 and 8 % respectively) compared to previous scenario. Collectively, Invertebrate biomass more stable and less variable compared to natural state.	65 L	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community.			

Seconorio	Specie (% similation	es richness rity in brackets)		2a. Abundance	2b.Community composition			
Scenario Score Summary of L/M/H change		Score L/M/H	core Summary of change		Summary of change			
3	100 L	No change	68 L	There is an increase in intertidal area by about 10 % (lower sandbank) and increased food availability in form of detritus (10 %). However, there is likely to be a reduction in recruitment success to the estuarine population because salinity values now hover around the breeding threshold – moving along a trajectory towards the natural state. The increase in State 3 (greater water exchange with the marine environment) by approximately 5 % will reduce anoxic conditions marginally, moving the invertebrate fauna along a trajectory towards an increase in average biomass and hence away from natural conditions.	68 L	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community.		
4	100 L	No change	60 L	There is an increase in intertidal area by about 10 % (lower sandbank) and increased food availability in form of detritus (10 %). However, there is likely to be a reduction in recruitment success to the estuarine population because salinity values now hover around the breeding threshold – moving along a trajectory towards the natural state. The increase in State 3 (greater water exchange with the marine environment) is similar to Scenario 3 and anoxic conditions therefore, will also be similar. Floods however, are reduced significantly (frequency and magnitude will decrease by 14 and 11 % respectively), leading to a more stable intertidal sandbank compared to the previous scenario. Thus, benthic invertebrate biomass will be more stable and average biomass will be higher compared to the previous scenario. In comparison to the natural state, variability and average biomass is much reduced.	60 L	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community.		

Seemerie	Species richness (% similarity in brackets)		2a. Abundance		2b.Community composition		
Scenario	Score L/M/H	Summary of change	Score L/M/H	Summary of change	Score L/M/H	Summary of change	
5	100 L	No change	65	Food availability utilized by invertebrates and in the form of phytoplankton biomass and detritus biomass would reduce, moving along a trajectory closer to the natural condition – invertebrate biomass would decline.	65	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community.	
6	100 L	No change	75	Abundance levels of the invertebrate community (particularly the benthos) would decline because of reduced recruitment to the dominant species (<i>Callianassa kraussi</i>) as salinity levels remain around the threshold required for successful reproduction.	75	Because of the increased intertidal area compared to natural (30 %) and increased detrital material (increased macrophyte coverage), the relative importance of individual species will also shift in the community. Recruitment however, will be more variable under this scenario, moving along a trajectory that approached the natural condition.	

5.3.3.3 Macrocrustaceans

1. Species richnessScenario(% similarity in brackets)			2a. Abundance	2b.Community composition		
	Score	Summary of change	Score	Summary of change	Score	Summary of change
Present	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
1	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
2	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
3	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
4	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
5	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions
6	100 L	No change	100 L	No change predicted – biomass also at a very low level, even under natural conditions	100 L	No change predicted – biomass also at a very low level, even under natural conditions

Scenario	Minimum score Species richness	Minimum score Abundance	Minimum score Community composition	Overall score
Present	100	65	65	65
1	100	70	70	70
2	100	65	65	65
3	100	68	68	68
4	100	60	60	60
5	100	65	65	65
6	100	75	75	75

Parameters	Present	Future Scenario 1	Future Scenario 2	Future Scenario 3	Future Scenario 4	Future Scenario 5	Future Scenario 6
States 1 and 2	û 26%	企 25%	企 26%	企 27%	 	企 26%	û 12%
Reduction in floods, intertidal sandbank expansion and stability	企 10%	<u></u> 10%	企 10%	û 10%	û 10%	<u></u> 10%	<u></u> 10%
Salinity	4%∿	4% ₽	3%₽	3%₽	3%∿	4% ₽	0.8%₽
Reduction in open sandy habitat as a result of increased macrophyte coverage.	₽ 10%	ֆ 10%					
Anoxic conditions	15% û	15%企	16% û	16% û	18% 企	15% 압	9% û
Increased production of detritus	① 5%	<u></u> 5%	企 10%	企 10%	û 5%	<u></u> 5%	û 5%

This section provides a summary of the parameters used as a proxy for change for invertebrates.

5.3.4 Fish

This section describes the changes in fish for the different run-off scenarios.

Scenario 1	No real change in salinity, so unlikely to have been any change in numbers due to opportunistic species entering the estuary, or change in community structure according to salinity preferences or tolerances. Similarly, water clarity remains high enough for visual foraging by selective feeders e.g. <i>A, breviceps</i> and those feeding on benthic invertebrates e.g. <i>L. lithognathus</i> . Hypoxia increases by 15 % but there's unlikely to be much change in the fish assemblage from Reference where the frequency of hypoxic/anoxic "events" was already sufficiently high to exclude benthic species such as <i>Caffrogobius</i> spp. from the deeper parts of the estuary. Phytoplankton biomass close to the natural low but a 11 % increase in benthic microalgae will have favoured mullet species and provided an alternative food source to phytoplankton for <i>G. aestuaria</i> and <i>A. breviceps</i> . The latter two species and all juveniles <30 mm of all the species in the estuary would have benefited by a 10 % increase in zooplankton. A 214 % increase in occurrence of macroalgae, the preferred habitat for <i>S. temminckii</i> and <i>R. holubi</i> , would have allowed these species to persist for longer periods in the estuary. However, the abundance of all species would depend on the relationship between algal biomass and oxygen levels. A 135 % increase in macroinvertebrate biomass (<i>C. kraussi</i>) likely to favour species such as <i>L. lithognathus</i> and <i>R. globiceps</i> , but the extent is likely to depend on the relationship between freshwater flow and prey availability. In the short-term, closed conditions are not persistent enough to hinder recruitment into the estuary during the peak recruitment period of August-September. Although semi-closed conditions occur for at least 5 months of the year, most fish species will cue to, and recruit through, the freshwater outflow, provided that there is sufficient depth (5-10cm) through which to navigate. On a longer time scale, large (and exploited) fish species are long-lived with a high age at maturity (6 years average), b
Scenario 2	Similar to Scenario 1, with no real change in salinity, so unlikely to have been any change in numbers due to opportunistic species entering the estuary, or change in community structure according to salinity preferences or tolerances. Water clarity high, therefore no change in visual foragers or selective feeders. Hypoxia increases by 16 % but little change in the fish assemblage from Reference where the frequency of hypoxic/anoxic "events" was already sufficiently high to exclude most benthic species from the deeper parts of the estuary. Phytoplankton biomass $\mathbb{J}9$ % but $\mathbb{1}14$ % in benthic microalgae \Rightarrow mullet $\mathbb{1}$, alternative food for <i>G. aestuaria</i> and <i>A. breviceps</i> . The latter two species, and all juveniles <30 mm of all the species in the estuary would have benefited by a 10 % $\mathbb{1}$ in zooplankton. Macroalgae 221 % $\mathbb{1}\Rightarrow$ $\mathbb{1}S$. temminckii and <i>R. holubi</i> habitat but nocturnal $\mathbb{I}O_2$. Macroinvertebrate biomass 140 % $\mathbb{1}\Rightarrow$ $\mathbb{1}L$. <i>lithognathus</i> and <i>R. globiceps</i> but the extent is likely to depend on the relationship between freshwater flow and prey availability. Fish recruit during August-September window and throughout semi-closed conditions but frequency and duration (2-10years) of droughts $\mathbb{1}\Rightarrow$ \mathbb{I} recruitment success.
Scenario 3	Similar to Scenario 1 and 2, with no real change in salinity, so unlikely to have been any change in numbers due to opportunistic species entering the estuary or change in community structure according to salinity preferences or tolerances. Water clarity high, therefore no change in visual foragers or selective feeders. Hypoxia increases by 16 % but little change in the fish assemblage from Reference where the frequency of hypoxic/anoxic "events" was already sufficiently high to exclude most benthic species from the deeper parts of the estuary. Phytoplankton biomass $\mathfrak{P}11$ % but $\mathfrak{P}15$ % in benthic microalgae \Rightarrow mullet \mathfrak{P} , alternative food for <i>G</i> . <i>aestuaria</i> and <i>A. breviceps</i> . The latter two species, and all juveniles <30 mm of all the species in the estuary would have benefited by a 10 % \mathfrak{P} in zooplankton. Macroalgae 224 % $\mathfrak{P} \Rightarrow \mathfrak{P}S$. <i>temminckii</i> and <i>R. holubi</i> habitat but nocturnal $\mathfrak{P}O_2$. Macroinvertebrate biomass 137 % $\mathfrak{P} \Rightarrow \mathfrak{P}L$. <i>lithognathus</i> and <i>R. globiceps</i> but the extent is likely to depend on the relationship between freshwater flow and prey availability. Fish recruit during August-September window and throughout semi-closed conditions, but frequency and duration (2-12years) of droughts $\mathfrak{P} \Rightarrow \mathfrak{P}$ recruitment success and some species e.g. <i>L. lithognathus</i> will be either of very low abundance or no longer occur.
Scenario 4	Similar to Scenario 1,2 and 3, with no real change in salinity, so unlikely to have been any change in numbers due to opportunistic species entering the estuary or change in community structure according to salinity preferences or tolerances. Water clarity high therefore no change in visual foragers or selective feeders. Hypoxia increases by 18 % but little change in the fish assemblage from Reference where the frequency of hypoxic/anoxic "events" was already sufficiently high to exclude most benthic species from the deeper parts of the estuary. Phytoplankton biomass $\sqrt[3]{21}$ % but $\hat{1}18$ % in benthic microalgae \Rightarrow mullet $\hat{1}$, alternative food for <i>G</i> .

	aestuaria and A. breviceps. The latter two species, and all juveniles <30 mm of all the species in the estuary would have benefited by a 10 % \hat{T} in zooplankton. Macroalgae 245 % $\hat{T} \Rightarrow \hat{T}S$. temminckii and R. holubi habitat but nocturnal $\bigcirc O_2$. Macroinvertebrate biomass 145 % $\hat{T} \Rightarrow \hat{T}L$. lithognathus and R. globiceps but the extent is likely to depend on the relationship between freshwater flow and prey availability. Fish recruit during August-September window and throughout semi-closed conditions, but frequency and duration (2-19years) of droughts $\hat{T} \Rightarrow \hat{\Psi}$ recruitment success and some species e.g. L. lithognathus will be either of very low abundance or no longer occur.
Scenario 6	Similar to scenario 1,2 and 3, with no real change in salinity, so unlikely to have been any change in numbers due to opportunistic species entering the estuary or change in community structure according to salinity preferences or tolerances. Water clarity high therefore no change in visual foragers or selective feeders. Hypoxia increases by 9 % but little change in the fish assemblage from Reference where the frequency of hypoxic/anoxic "events" was already sufficiently high to exclude most benthic species from the deeper parts of the estuary. Phytoplankton biomass $\hat{1}6$ % and $\hat{1}28$ % in benthic microalgae \Rightarrow mullet $\hat{1}$, alternative food for <i>G. aestuaria</i> and <i>A. breviceps</i> . The latter two species, and all juveniles <30 mm of all the species in the estuary would have benefited by a 10 % $\hat{1}$ in zooplankton. Macroalgae 157 % $\hat{1} \Rightarrow \hat{1}S$. temminckii and <i>R. holubi</i> habitat but nocturnal \bigcup O_2 . Macroinvertebrate biomass 125 % $\hat{1} \Rightarrow \hat{1}L$. <i>lithognathus</i> and <i>R. globiceps</i> but the extent is likely to depend on the relationship between freshwater flow and prey availability. Fish recruit during August-September window and throughout semi-closed conditions. Under Reference, Present Day, Scenarios 1 and 6, the probability of a successful spawning and recruitment remains high with droughts of 2-5 years.

Scenario	Species richness (% similarity in brackets)		Abundance		С	Overall score	
	Score	Summary of change	Score	Summary of change	Score	Summary of change	
Present	80 (90%) M	Alien predation ↓in catadromous (eels), facultative catadromous (e.g. <i>Monodactylus</i> <i>falciformis</i>) spp. that have to migrate past the head of the estuary.	95 M	Benthic microalgae \hat{U} , macroalgae \hat{U} , $O_2 \mathbb{Q}$, \hat{U} prey availability. \hat{U} <i>Mugillidae</i> , \hat{U} weed loving spp. e.g. S. temminckii, \hat{U} juvenile zooplankton feeders e.g. <i>L.</i> <i>lithognathus</i> . \mathbb{Q} benthic spp. e.g. <i>Caffrogobius</i>	90 M	Detritivoreû, selective feederû, benthic invert feederû, ⊕benthic spp.	80 M
1	80 (90%) M	Alien predation Alien predation ♣in catadromous (eels), facultative catadromous (e.g. <i>Monodactylus</i> <i>falciformis</i>) spp. that have to migrate past the head of the estuary.	95 M	Benthic microalgae \hat{U} , macroalgae \hat{U} , $O_2 \mathbb{Q}$, \hat{U} prey availability. \hat{U} <i>Mugillidae</i> , \hat{U} weed loving spp. e.g. S. temminckii, \hat{U} juvenile zooplankton feeders e.g. <i>L.</i> <i>lithognathus.</i> \mathbb{Q} benthic spp. e.g. <i>Caffrogobius</i>	90 M	Detritivoreû, selective feederû, benthic invert feederû,⊕benthic spp.	80 M

Scenario	Species richness (% similarity in brackets)			Abundance	С	Overall score	
	Score	Summary of change	Score	Summary of change	Score Summary of change		
2	65 (80%) M		70 M	Benthic microalgae \hat{U} , macroalgae \hat{U} , $O_2 \mathbb{Q}$, \mathbb{Q} prey availability, \hat{U} drought. \hat{U} <i>Mugillidae,</i> \hat{U} weed loving <i>spp.</i> <i>e.g. S. temminckii.</i> \mathbb{Q} juvenile zooplankton feeders and recruitment of estuarine dependent marine species e.g. <i>L. lithognathus.</i> \mathbb{Q} benthic spp. e.g. <i>Caffrogobius</i>	80 M	♣Recruitment, ♣prey availability, ♣all except detritivorous mullet	70 M
3	65 (80%) M	In Drought, Implies the stuary. In Drought, Implies the stuary of the stuary of the stuary of the stuary of the stuary. In the stuary of the stuary of the stuary of the stuary of the stuary. In the stuary of the stuary of the stuary. In the stuary of the stuary of the stuary of the stuary. In the stuary of the stuary of the stuary. In the stuary of the stuary of the stuary of the stuary of the stuary.	60 M	Benthic microalgae \hat{U} , macroalgae \hat{U} , $O_2 \mathbb{Q}$, \mathbb{Q} prey availability, \hat{U} drought. \hat{U} <i>Mugillidae,</i> \hat{U} weed loving <i>spp.</i> <i>e.g. S. temminckii.</i> \mathbb{Q} juvenile zooplankton feeders and recruitment of estuarine dependent marine species e.g. <i>L. lithognathus.</i> \mathbb{Q} benthic spp. e.g. <i>Caffrogobius</i>	70 M	♣Recruitment, ♣prey availability, ♣all except detritivorous mullet	60 M

Scenario	Species richness (% similarity in brackets)			Abundance	С	Overall score	
	Score	Summary of change	Score	Summary of change	Score Summary of change		
4	50 (70%) M	¹ Drought,↓recruitmentofestuarinedependentmarinespecies.Alienpredationpredation↓ incatadromous(eels),facultativecatadromouscatadromous(e.g.Monodactylusfalciformis)spp.thave to migrate pasttheheadestuary.	50 M	Benthic microalgae \hat{U} , macroalgae \hat{U} , $O_2 \mathbb{Q}$, \mathbb{Q} prey availability, \hat{U} drought. \hat{U} <i>Mugillidae,</i> \hat{U} weed loving <i>spp.</i> <i>e.g. S. temminckii.</i> \mathbb{Q} juvenile zooplankton feeders and recruitment of estuarine dependent marine species e.g. <i>L. lithognathus.</i> \mathbb{Q} benthic spp. e.g. <i>Caffrogobius</i>	60 M	♣Recruitment, ♣prey availability, ♣all except detritivorous mullet	50 M
6	80 (90%) M		95 M	Nutrient [⊕] , benthic microalgae [⊕] , macroalgae [⊕] , O ₂ û, û benthic spp.e.g. <i>Caffrogobius</i> , û benthic prey, û benthic feeders e.g. <i>R.</i> <i>holubi</i> , ûprey availability, û most spp.	95 M	Detritivoreû, selective feederû, benthic invert feederû,∿benthic spp.	80 M

This section provides a summary of the parameters used as a proxy for change for fish.

Feasibility Study into the Potential Development of Further Surface Water Supply Schemes for the Western Cape - Palmiet Estuary

Parameters	Present	Future Scenario 1	Future Scenario 2	Future Scenario 3	Future Scenario 4	Future Scenario 5	Future Scenario 6
Drought length	2-5 years	2-5 years	2-10 years	2-12 years	2-19 years	2-5 years	2-10 years
Subtidal/intertidal area	30%₽	30%₽	30%₽	30%₽	40%₽	30%₽	30%₽
Salinity	4%₽	4% ₽	3%₽	3%₽	3%₽	4%₽	0.8%₽
Hypoxia/anoxia	15% 압	15% 압	16% 企	16% 企	18% 企	15% 企	9% û
Phytoplankton	8% ₽	0 ∆	9%₽	11%₽	21%₽	27%₽	6% ₽
Benthic microalgae	14% ប៌	11% ଫ	14% 企	15% 企	18% 企	4% 企	14% 얍
Macroalgae occurrence	38% 企	35% 企	37% 企	37%企	42% 企	36% 企	23% 企
Zooplankton	10% û	10% û	10% 企	10% 企	10% 企	10% 企	10% 얍
Benthic invertebrates	40% 企	35%企	40%企	37%企	45%企	40% 企	20 %企

5.3.5 Birds

This section describes the changes in fish for the different run-off scenarios. It is, however, difficult to generalise for a system that has small numbers of birds, apart from the gull and tern roost, and for which numbers are naturally highly variable. Thus estimates are of a low confidence.

Scenarios 1 and 5	Scenario 1 has slightly improved hydrology and hydrodynamics (moving back towards reference), and though most groups are still elevated in abundance relative to present state, they are not as elevated as at present. Changes in fish are negligible. No significant changes in birds expected relative to present. From a bird perspective, characteristics of the estuary under scenario 5 are similar to scenario 1.
Scenarios 2-4	Scenarios 2 to 4 entail a decrease in flow and flooding, and increase in mouth closure relative to present, which makes it less attractive to birds. For scenarios 2 and 3, these changes do not have a significant impact relative to present, but by Scenario 4, the changes are sufficient to have a measurable negative effect on fish abundance. Invertebrate abundance changes very little compared to present day. Overall, there will be slightly lower numbers of birds, but overall composition does not change markedly.
Scenario 6	In this scenario mouth condition is closer to natural than any other scenario, including present day. There is little change in the intertidal area, invertebrates are closer to natural, i.e. not as abundant as in present day. Fish are as under natural and present conditions.

Seenario	1. Speci (% similari	es richness ty in brackets)		2a. Abundance	2b.Community composition		Overall seere
Scenario	Score	Summary of change	Score	Score Summary of change		Summary of change	Overall Score
Present	100 (100%) L	None	81 L	Invertebrate feeders 1% [‡] Gulls and terns 21% [‡] Other piscivores no change	100 L		93 L
1	100 (100%) L	None	81 L	Invertebrate feeders 5% Gulls and terns 20% Other piscivores no change	100 L		93 L
2	100 (100%) L	None	79 L	Invertebrate feeders 1% [↓] Gulls and terns 21% [↓] Other piscivores 30% [↓]	100 L	Because of dominance of gulls and	92 L
3	100 (100%) L	None	78 L	Invertebrate feeders 5% [‡] Gulls and terns 22% [‡] Other piscivores 40% [‡]	100 L	terns, overall impacts on community are negligible for all scenarios	91 L
4	100 (100%) L	None	74 L	Invertebrate feeders 1%₺ Gulls and terns 26%₺ Other piscivores 50%₺	100 L		89 L
5	100 (100%) L	None	80 L	Invertebrate feeders 1% [‡] Gulls and terns 21% [‡]	100 L		80 L
6	100 (100%) L	None	93 L	Invertebrate feeders 7% $\ensuremath{\mathbb{F}}$ Gulls and terns 7% $\ensuremath{\mathbb{F}}$	100 L		93 • L

This section provides a summary of the parameters used as a proxy for change for birds.

Parameters (Abundance)	Present	Future Scenario 1	Future Scenario 2	Future Scenario 3	Future Scenario 4	Future Scenario 5	Future Scenario 6
Change in time mouth open	26%₽	25%₽	26%₽	27%₽	31%₽	26%₽	12%₽
Change in intertidal area	10% 얍	10% 얍	10% û	10% 企	15% 압	10% û	10%企
Benthic invertebrates	40%企	35%企	40% 企	37% 企	45% 企	40%企	20%企
Fish	0%①	0%₽	30%₽	40%₽	50%₽	0%	0%
Birds	7%₽	7% ⊕	8%₽	9%₽	11%	26% ₽	12 <mark>%</mark> ₽

6 RECOMMENDED ECOLOGICAL FLOW REQUIREMENT FOR THE PALMIET ESTUARY

The individual EHI Scores, as well as the corresponding categories for the scenarios are listed in Table 6.1:

Variable	Majaht	Drecont			Sce	nario					
variable	weight	Present	1	2	3	4	5	6			
Hydrology	25	67	72	66	65	57	67	74			
Hydrodynamics and mouth condition	25	46	47	43	43	36	46	77			
Water quality	25	75	74	75	76	76	81	75			
Physical habitat alteration	25	78	78	78	78	69	78	78			
Habitat Health Score		66	67	65	65	60	68	76			
Microalgae	20	74	75	74	73	69	73	72			
Macrophytes	20	45	47	45	45	41	45	64			
Invertebrates	20	60	70	65	68	55	65	75			
Fish	20	80	80	65	60	50	80	80			
Birds	20	81	81	79	78	74	80	93			
Biotic Health Score		68	71	66	65	58	69	77			
EHI		67	69	66	66	59	68	76			
Category		С	С	С	С	D	С	В			

Table 6.1	Summar	v of individual	EHI Scores	and resultant	category	/ for Scenarios 1 to 6
	Gainnai	, or marriadar		, and i coultaint	outogoij	

The evaluation of the simulated runoff scenarios was used to derive the recommended EWR, which is defined as the runoff scenario (or a slight modification thereof) that represents the highest reduction in river inflow that will protect the aquatic ecosystem of the estuary and maintain it in the REC.

There is some concern that the structural habitat of the estuary may be on a negative trajectory of change, since the sedimentary processes may not yet have reached equilibrium following the construction of dams in the upper catchment.

In evaluating Scenarios 1 to 4, it was assumed that only river inflow would be modified and that other anthropogenic activities (e.g. fishing, bait collection and human disturbance) would remain the same as the present situation. Scenario 5 is similar to Present State in freshwater flows, but it assumes a 66 % reduction in inorganic nutrient and anthropogenic organic matter inputs to the estuary. Scenario 6 is similar to the Scenario 2 in freshwater flows, but it requires that baseflows to the estuary not be less than 1.0 m³s⁻¹ for longer than 3 months a year to reduce the likelihood of macroalgae blooms and related anoxic/hypoxic conditions developing.

Scenarios 1 to 3 will maintain the estuary in its present health status (i.e. **Category C**). Scenario 1 represent a slight improvement from the present, with a 3 % increase in the health of the biota, while Scenarios 2 and 3 will reduce the health of the system slightly. Of concern here was the further loss of variably in flow for needed for controlling the macroalgae blooms and the development of low oxygen conditions. Scenario 4 will degrade the condition to a **Category D**.

Scenario 5 (similar to present but with reduced nutrient input) only improve the health of the system marginally to maintain it in a **Category C**, with a slight improvement from the present, but it would be a challenge to achieve the level of nutrient reduction required under this scenario. Scenario 6 will improve the health of the estuary to a **Category B**.

Taking the above into account, **Scenario 6 is the recommended EWR for the Palmiet Estuary**. A summary of flow distributions for the recommended ecological flow scenario (Scenario 6) is provided below in Table 6.2.

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
99%ile	20.44	8.79	3.58	2.81	2.35	2.44	6.71	12.85	25.23	43.50	36.36	27.49
90%ile	10.43	3.90	1.43	0.82	0.83	1.05	3.53	7.91	19.45	22.70	26.15	17.93
80%ile	6.61	2.52	1.00	0.57	0.68	0.81	2.06	5.38	12.39	17.16	19.62	13.37
70%ile	5.89	1.98	1.00	0.52	0.54	0.56	1.50	4.34	9.39	13.35	16.73	11.27
60%ile	4.52	1.66	1.00	0.52	0.52	0.51	1.19	3.78	8.25	11.40	15.80	9.75
50%ile	3.66	1.47	1.00	0.52	0.49	0.44	1.00	3.12	7.03	9.91	13.54	7.91
40%ile	3.17	1.36	1.00	0.45	0.34	0.33	1.00	2.56	5.46	8.88	11.20	6.58
30%ile	2.81	1.20	1.00	0.35	0.32	0.30	1.00	2.13	4.14	6.64	9.94	6.05
20%ile	2.40	1.00	1.00	0.32	0.29	0.27	1.00	1.60	3.57	5.43	8.43	5.67
10%ile	1.76	1.00	1.00	0.28	0.26	0.25	1.00	1.30	2.56	4.63	7.01	5.05
1%ile	1.22	1.00	1.00	0.10	0.08	0.12	1.00	1.00	1.27	3.00	5.02	3.95

Table 6.2	Summary of flow distributions (in m ³ s ⁻¹) of the recommended Ecological Flow
	Scenario (Scenario 6) for the Palmiet Estuary

Note that an increase in river inflow in itself (i.e. Scenario 6) would not be sufficient to ensure the recommended level of estuarine functioning. The following restoration measures are required to improve the present health of the Palmiet Estuary:

- Manage anthropogenic nutrient and organic matter inputs to the estuary through improved agricultural and urban landscape management;
- Improve the compliance monitoring of fishing and bait collection activities on the estuary. This will assist in controlling illegal harvesting of the estuarine living resources. At present, recreational angling (and the occasional gillnetting) accounts for approximately 0.2 tonne annually. This includes the requirement for improved control of the harvesting of eels from the catchment.
- Restrict bait collection when the mouth is closed, since recruitment cannot occur during extended periods of mouth closure as it leads to the depletion of important food resources in the estuary.
- Install a fish ladder at the gauging weir, and an eelway at the dams, to facilitate migration of fishes into the lower river reaches.

Any assessment of future water resources development will also have to include an evaluation of the success of the implementation of these non-flow related mitigation measures in restoring the habitat, and protecting biota before being passed.

7 COOPERATIVE GOVERNANCE

The setting and achievement of national management objectives for the Palmiet Estuary will require a high level of co-operative governance between the various management authorities. For example, there needs to be:

- Agreement between DWA, DEA, DAFF and SANBI on the overall level of biodiversity protection for the Palmiet Estuary, i.e. Management Class.
- A matching allocation of freshwater from DWA, as the DWA Ecological Management Class is directed towards the water resource and may be lower than the overall Biodiversity Management Class, which may be higher as a consequence of effective management of other anthropogenic activities in the estuarine environs.
- DWA to establish a long-term health monitoring programme for the Palmiet Estuary.
- Co-operation from local farmers and the Department of Agriculture on improved farming practices in the catchment.
- Increased compliance monitoring by DAFF: MCM regarding fishing and bait collection in the system, and agreement and implementation of the restriction on bait collection during periods of mouth closure.

Lastly, it is recommended that the Palmiet Estuarine Management Plan be developed based on findings of this study and on the guidelines for the estuaries of the Cape Floral Region (Van Niekerk and Taljaard 2007). This will provide a framework for implementing the proposed mitigation measures for improving the health of the estuary, and will assist in the allocation of roles and responsibilities among the authorities managing activities in and around the system.

8 ECOLOGICAL SPECIFICATIONS

Ecological Specifications are clear and measurable specifications of ecological attributes (in the case of estuaries - hydrodynamics, sediment dynamics, water quality and different biotic components) that define a specific ecological reserve category, in this case a **Category B** (Table 8.1).

Thresholds of potential concern (TPC) are defined as measurable end points related to specific abiotic or biotic indicators that if reached (or when modelling predicts that such points will be reached) prompts management action. In essence, TPCs should provide early warning signals of potential non-compliance to ecological specification (i.e. not the point of 'no return'). This implies that the indicators (or monitoring activities) selected as part of long-term monitoring programme need to include biotic and abiotic components that are particularly sensitive to changes in river inflow.

Table 8.1	Palmiet: Ecological Specifications for the Recommend Ecological Category B.
-----------	---

Component	Ecological Specification	Threshold of Potential Concern	Potential Causes
	Salinity distribution not to exceed TPCs for fish, invertebrates, macrophytes and microalgae (see above).	WQ1: Salinity values below 10 ppt for longer than three months in a year.	Illegal abstractions from the river upstream, operational releases not executed correctly or drought conditions.
		WQ2: River inflow: Summer temperature <20 °C; pH >8; Dissolved oxygen <4 mg/l.	
	System variables (Temperature, pH, turbidity, dissolved oxygen, suspended solids and	WQ3: Average Secchi disc depth in estuary <2 m	Potential bottom releases for a dam during summer (low temperature water)
	turbidity) not to exceed TPCs for biota (see above).	WQ4: pH > 8.5 in estuary	Inappropriate agricultural practices in catchment (organic loading).
		WQ5: Average DO concentration in water column of estuary <4 mg/l (except in deeper areas during closed mouth or semi-closed states).	
Water Quality		WQ7: River inflow: Average DIN concentration >100 µg/l (dry season) or >500 µg/l (wet season);	
		WQ8: Average DIP concentration >10 µg/I (dry season) and >50 µg/I (wet season).	
	Inorganic nutrient concentrations not to exceed TPCs for macrophytes and microalgae (see above).	WQ9: Average DIN concentrations in freshwater section >100 μ g/l (dry season) (marine waters may have higher conc's linked to upwelling) and >500 μ g/l (wet season)	Inappropriate agricultural practices in catchment (e.g. fertilizers).
		WQ10: Average DIP concentrations >10 μ g/l (dry season) (marine waters may have higher conc's linked to upwelling) and >50 μ g/l (wet season).	

Component	Ecological Specification	Threshold of Potential Concern	Potential Causes
	Presence of toxic substances not to exceed TPCs for biota (see biotic components above).	WQ11: Trace metals concentrations in estuary exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF 1995). TPCs for trace metals in sediments still need to be established. WQ12: Pesticides/herbicides: baseline studies to be undertaken before TPCs can be set.	Inappropriate agricultural practices in catchment (e.g. pesticides/herbicides).
Hydrodynamics	Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality.	 H1: River inflow distribution patterns differ by more than 5 % from that of Scenario 6. (i.e. recommended flow scenario for the Palmiet). H2: Monthly average river inflow below 1.0 m³/s persists for longer than three months in a row. H3: Mouth closure occurs more than one month in a row in a year and semiclosure occurs for more than three months in a row. H4: Total annual inflow <175 million m3 for more than 5 years in a row. 	Illegal abstractions from rivers upstream, operational releases not executed correctly or drought condition.

Component	Ecological Specification	Threshold of Potential Concern	Potential Causes
Sediment dynamics	Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota (see above).	S1: River inflow distribution patterns (flood components) differ by more than 20 % (in terms of magnitude, timing and variability) from that of the present state (2009).	
		S2: Suspended sediment concentration from river inflow deviates by more than 20 % of the sediment load-discharge relationship to be determined as part of baseline studies (present state 2009). S3: Findings from the bathymetric surveys undertaken as part of the Palmiet Monitoring programme indicate changes in the sedimentation and erosion patterns in the estuary have occurred (± 0.5 m) in the lower reaches.	Modification to inflow at head of estuary. Significant reduction in floods to the Palmiet Estuary. Changes in mouth breaching techniques.
	Changes in sediment grain size distribution patterns not to exceed TPCs in benthic invertebrates (see above).	 S4: The median bed sediment diameter deviates by more than a factor of two from levels to be determined as part of baseline studies (present state 2009). S5: Sand/mud distribution in the middle and upper reaches change by more than 10 % from present state (2009). S6: Changes in tidal amplitude at the tidal gauge of more than 20 % from present state (2009). 	Modification to inflow at head of estuary; Catchment activities; Estuary mouth changes.
Phytoplankton	Maintain low phytoplankton biomass. Maintain microalgal group diversity as measured for the baseline survey.	 A1: Increase in phytoplankton biomass to 20% greater than the baseline concentrations. A2: Deviation in phytoplankton group diversity to 20 % of that found for baseline conditions. 	Elevated nutrient concentrations in the inflowing freshwater. Reduced freshwater inflow.

Component	Ecological Specification	Threshold of Potential Concern	Potential Causes
Benthic microalgae	Maintain high subtidal benthic microalgal biomass during the closed mouth phase and low intertidal benthic microalgal biomass during the	A3: Deviation in benthic microalgal biomass by 20 % compared to baseline concentrations.	Elevated nutrient concentrations in the inflowing freshwater.
	open phase. Epipelic diatoms indicative of brackish conditions should be found during the closed phase.	A4: No brackish epipelic diatoms are found during the closed phase.	Change in mouth condition. Increase in salinity.
Macrophytes	Maintain the distribution of plant community types i.e. macroalgae (<i>Cladophora</i> and <i>Ulva</i> spp.) during closed/semi-closed mouth brackish conditions (~1 ha) and intertidal salt marsh (~0.1 ha). No invasive species e.g. <i>Spartina</i> <i>alterniflora</i> present on the salt marsh.	M1: Greater than 20 % change in the area covered by different plant community types for baseline open and closed mouth conditions. M2: Presence of invasive species.	Change in flow and mouth condition resulting in low (near fresh) salinity. Change in mouth condition and associated water level fluctuations.
	Prevent excessive filamentous macroalgal growth. Area covered should be less than 50 % of the open water surface area.	M3: Macroalgae cover greater than 50 % in 1 m ² quadrats. Macroalgae cover greater than 50 % of the open water surface area in the eastern channel and above sand bank in the lower reaches of the estuary. Macroalgal wet biomass is greater than 500 g m ⁻² .	Elevated nutrient concentrations. Prolonged closed mouth conditions and lack of freshwater floods and flushing.
	Maintain the zonation of salt marsh and distribution of different species along an elevation gradient. Ensure the long-term persistence of intertidal salt marsh species such as <i>Triglochin striata</i> and <i>Cotula coronopifolia</i> .	M4: Loss of <i>Triglochin spp.</i> and <i>Cotula coronopifolia</i> from the small saltmarsh area.	Reduced freshwater inflow and high salinity. Increased closed mouth conditions, high water levels and loss of intertidal habitat.
	Prevent hypersaline sediment and groundwater conditions in the salt marsh. Sediment electrical conductivity should be approximately 30 mS and similar to groundwater values.	M5: Sediment and groundwater electrical conductivity is greater than 30 mS for the salt marsh area.	Reduced freshwater inflow and high salinity. Reduced floods and flushing of salts from supratidal and floodplain salt marsh areas.

Component	Ecological Specification	Threshold of Potential Concern	Potential Causes
Invertebrates	Density of sandprawn burrow openings should exceed 75 per m ² in the highest density areas in the lower estuary. Amphipods should numerically dominate the benthic fauna (<i>Grandidierella</i> sp.and <i>Corophium</i> <i>triaenonyx</i>) living on the sediment surface in the middle and upper estuarine reaches respectively. In the zooplankton, the density of <i>Pseudodiaptomus hessei</i> should range between 100 and 5000 m ³ in the summer in the mid- estuary region.	 I1: The abundance of <i>Callianassa kraussi</i> burrows in the lower estuary drops below 50 counts per m² in the highest density areas. I2: Amphipods do not dominate the surface dwelling benthic fauna. I3: <i>Pseudodiaptomus hessei</i> disappears from the zooplankton for prolonged periods (months). 	The mouth remains closed or semi- closed for extended periods, leading to persistent low salinity values (<5 ppt) throughout the estuary.
Fish	 Retain the following fish assemblages in the estuary (based on abundance): Estuarine species (10-20 %); Estuarine associated marine species (80-90 %); and Indigenous freshwater species (±1 %). All numerically dominant species are represented by 0+ juveniles. 	 F1: Level of estuarine species increases above 60 % of total abundance. F2: Level of estuary associated marine species drops below 60 % of total abundance. F3: Alien <i>Lepomis macrochirus</i> and <i>Micropterus</i> spp. dominate in the upper reaches. F4: Absence of 0+ juveniles of any of the dominant fish species. 	Recruitment failure due to prolonged drought, mouth semi-/closure and extension of these conditions into the August-December peak recruitment period⇒proportion estuary breeders ↑ Have eaten all the indigenous fish, high predation on recruiting elvers. -Breeding failure or impaired recruitment.
Birds	Retain regular representation of waders, gulls, and terns, and overall waterbird species richness of seven or more species.	B1: Estuary becomes regularly used by waterfowl species such as Redknobbed Coot.B2: Waders or terns are absent from the estuary for five consecutive counts.	Regular or prolonged periods of mouth closure, high water levels, proliferation of weed and loss of intertidal foraging areas.
9 MONITORING REQUIREMENTS

Sustainable management of the Palmiet Estuary can only be achieved through a sound understanding of its biophysical process based on appropriate and reliable quantitative data. However, the collection, processing and interpretation of such data is often time consuming, and costly, and often requires considerable scientific expertise.

Recommendations for the monitoring of the Palmiet Estuary's biophysical processes have been based on: 1) current data collection methods, 2) the baseline data requirements for the Resource Directed Measures methods for estuaries addressing the Ecological Reserve (Version 2) (DWAF 2003) and 3) the guidelines and procedures to design resource monitoring programmes for estuaries as part of the Ecological Reserve Determination process for estuaries (Taljaard *et al.* 2003).

Resource monitoring programmes can be sub-divided (Taljaard et al. 2003) into:

- **Baseline surveys (or studies)** the purpose of which is to collect data and information to characterise and understand the ecosystem functioning of a specific system. The baseline studies that are carried out for an Ecological Reserve determination study at a comprehensive level are suitable for long-term monitoring of estuaries. If the EWR study is carried out at a rapid or intermediate level, as was the case for the Palmiet Estuary, additional 'baseline' work is required to produce sufficient baseline data for long-term monitoring.
- Long-term (or compliance) monitoring programmes to assess (or audit) whether management objectives are being achieved. The purpose of long-term monitoring programmes, in this context, is to assess (or audit) whether the Ecological Specifications are being complied with and to improve and refine the measures, including Resource Quality Objectives, in the longer-term through an iterative process (Taljaard *et al.* 2003). Although baseline studies and long-term monitoring programmes have different purposes, it is extremely important that long-term monitoring programmes follow on from similarly structured baseline studies. In essence, the monitoring activities selected for the long-term monitoring programme should be derived from the monitoring activities conducted as part of the baseline studies, but implemented on less intensive spatial and/or temporal scales (Taljaard *et al.* 2003).

It is important to note the difference between conducting surveys and monitoring. <u>Surveys</u> normally refer to short-term or once-off, intensive investigations on a wide range of parameters to obtain a better <u>understanding of estuarine processes</u>. <u>Monitoring</u> refers to <u>ongoing data collection</u> of a selection of indicator parameters in order to determine long-term change and trends. Long-term monitoring can be done for several reasons, one of which is for compliance monitoring.

A list of abiotic indictors that should always be included in long-term monitoring programmes to allow for proper identification of 'cause and effect' links with regard to river inflow and water quality are (Taljaard *et al.* 2003):

- River inflow (i.e. flow gauging);
- continuous water level recording at the estuary mouth (recording the state of the mouth, a key driver for most biotic components);
- water quality of river inflow;
- water quality and flow rate of effluent discharges into the estuary; and
- salinity distribution patterns under different river flow ranges.

Aerial photographs collected on a regular basis, are also considered as key components in the long-term monitoring of estuaries, as these provide useful information on both abiotic and biotic components (Taljaard et al. 2003).

Criteria that should be considered in the selection and prioritisation of biotic indicators for long-term monitoring programmes include:

The biotic indicators should be particularly <u>sensitive to potential impacts associated with</u> <u>changes in river inflow and water quality</u>, such as state of the mouth, tidal variation, sedimentation/erosion, salinity distribution patterns and deterioration in water quality.

- Biotic components considered to be on a <u>'trajectory of change'</u> or that are particularly sensitive to abiotic components that are on a 'trajectory of change' (e.g. long term sedimentation), should also be considered for inclusion as indicators in long-term monitoring programmes.
- Biotic components that are of <u>regional or national biodiversity importance</u> are also suitable indicators, particularly when also sensitive to changes in river inflow and water quality.
- Biotic indicators should also be representative of the <u>important food chains present in</u> <u>a particular system.</u>
- The selection of biotic indicators should also present a balance between <u>indicators that</u> <u>provide 'early warning' signals and those that reflect longer-term, more cumulative</u> <u>effects</u>. For example, fish are often considered to be useful 'early warning' indicators, while macrophyte distribution patterns are often better indicators of cumulative, longerterm changes in estuaries.
- Biotic indicators should include <u>economic important</u> indicators where relevant.

A list of the data requirements and the status of the availability of data for the RDM project undertaken in 2007 and 2008 is included in Appendix A for background information.

Based on the above mentioned and the results described in the Review Report (CSIR 2003), the following monitoring programme is recommended (also see summary in Appendix B).

9.1 HYDRO- AND SEDIMENT DYNAMICS

9.1.1 Sampling Procedure

- <u>Continuous flow recording of river inflow.</u> There is a continuous record available from the DWA gauging station G4H007 just upstream of the Palmiet Estuary.
- <u>Continuous water level recordings.</u> A continuous water level recorder is installed on the north bank in the middle of the estuary (Station G4R009-A01).
- <u>Daily observations.</u> Where possible, daily mouth observations should be made of the state of the Palmiet Estuary mouth. These observations assist tremendously in the operational management of the estuary mouth and determining when the additional water releases are required.
- <u>Wave conditions.</u> Data on current wave conditions is available online at <u>http://www.fnmoc.navy.mil/PUBLIC/.</u>
- <u>Aerial photographs.</u> Full colour geo-referenced rectified aerial photographs (1: 5 000 scale) covering the entire estuary based on the geographical boundary at low tide every 5 years. The photographs must include the breaker zone near the mouth.

• <u>Topographical surveys</u>. Should be made of the mouth area at 20 m intervals and bathymetrical surveys of cross-sections every 0.1 km upstream of the estuary to the full extent of tidal variation.

9.1.2 Baseline data

Bathymetric/topographical surveys: Surveys should be conducted using Differential Global Positioning System (D-GPS) and echo-sounding to monitor berm height, mouth sediment dynamics and cross section profiles upstream of the mouth.

Sediment grabs: Grab samples should be collected using a Van Veen or a Zabalocki-type Eckman grab (to characterise recent sediment movement) for particle size analysis.

Sediment cores: Core samples should be collected using a corer (for historical sediment characterisation)

Sediment load at head of estuary (including detritus component – particulate carbon/loss on ignition)

Comprehensive Reserve. Sediment dynamics are evaluated in detail for a comprehensive level Reserve study. For such a study, data from seasonal sediment grab samples (spring, summer, autumn and winter) for one year, a once-off set of sediment cores and daily at the sediment load head of measurements of estuary are required. Bathymetric/topographical surveys are required at five year intervals, with an additional three surveys (every two months) after a major flood event to establish the rate of deposition in the svstem.

9.1.3 Long-term monitoring

It is crucial that a continuous record be kept of freshwater inflow into the estuary. Moreover, it is essential that the continuous water level recorder, near the estuary mouth, be maintained. Lastly, the most recent full colour aerial photographs of the Palmiet Estuary are nearly four years old, and it is recommended that the practice of taking aerial photographs be resumed on a three yearly basis, using DGPS technology. Topographic/bathymetric surveys and grab samples should be repeated at five year intervals.

9.2 WATER QUALITY

9.2.1 Sampling Procedure

Water quality samples need to be taken of the river inflow near the head of the estuary (i.e. at weir - DWA Station G4H007) for analysis of system variables (TDS, temperature, pH, DO, Turbidity/Suspended solids²), inorganic nutrients (DIN [nitrite, nitrate and ammonia], DIP and DRS), toxic substances (in particular herbicides/pesticides) and organic nutrients (dissolved and particulate).

Water quality in the estuary should be measured at 5 stations distributed geographically along the entire estuary at fixed intervals. A sampling station is defined as a location at a specific 'distance from the mouth'. The following samples should be collected:

² Palmiet is typically a clear water systems, but turbidity/suspended solids needs to be included when there is evidence that this status changed, i.e. system is becoming turbid

- Salinity and temperature profiles (also required for hydrodynamics);
- System variables (pH, DO, Secchi depth); and
- Inorganic nutrients (nitrate/nitrite, ammonia, reactive phosphate and reactive silicate)

Salinity and temperature data must be collected at 0.5 m depth intervals, while other water quality parameters are collected in surface and bottom waters.

Where toxic substances are suspected (e.g. from contaminated agricultural runoff), sediment samples should be collected and analysed for toxic substances (in this case herbicides and pesticides). To assist with the interpretation of results, samples should also be analysed for sediment grain size distribution and organic content. A grid of sediment sampling stations should be selected across estuary, specifically targeting depositional areas (characterised by finer sediment grain sizes and/or higher organic content

Notes:

The analytical techniques used in the processing of marine and estuarine water quality samples vary greatly from those used in the analysis of fresh water samples. It is therefore crucial that an accredited marine analytical laboratory conducts the analyses of water quality samples.

Estuaries receive water from two sources, i.e. the river and sea, each with distinctively different water quality characteristics, particularly in terms of system variables and nutrients. It is therefore also crucial that water samples from the two sources, i.e. river and sea be taken are included in the monitoring programmes as indicated. The water quality characteristics in an estuary depend on the extent of the influences of each of these sources (governed by hydrodynamic processes), but also biochemical processes (e.g. organic degradation and eutrophication). The influence of such biochemical processes is particularly evident where residence times of water are longer, in this case the closed and semi-closed states.

For toxic substances (e.g. herbicides/pesticides) it is considered more appropriate to sample environmental components that tend to <u>integrate or accumulate these toxins over time</u>, such as sediments.

9.2.2 Baseline data

Additional baseline data required for the Palmiet Estuary (see Appendix A and B):

- Toxic substances (herbicides/pesticides) in river inflow
- Organic nutrients (C, N and P) (dissolved and particulate) in river inflow
- Organic nutrients (C, N and P) input from the sea
- Extent of benthic accumulation of toxic substances (herbicides/pesticides) in the estuary
 - should input from river be significant
 - as well as benthic accumulation of particulate
 organic nutrients (C, N and P)matter in the estuary (see above)

9.2.3 Long-term monitoring

Water quality samples need to be taken of the <u>river inflow</u> near the head of the estuary (i.e. at weir - K2H002Q01). Water quality in the estuary should preferably be measured in conjunction with other biotic components. Where possible, water quality should be measured at intervals of about three years (see Appendix B).

For long-term monitoring programmes, <u>water quality monitoring in the estuary</u> is particularly important for the interpretation of specific biological responses and, therefore must be collected along with the relevant biotic components, as indicated during their sampling surveys. Sediment surveys (toxic substances and organic accumulation) should ideally be conducted very 3-6 years if deemed necessary in future (e.g. depending on findings of baseline surveys) (see Appendix B).

9.3 MICROALGAE

9.3.1 Sampling Procedure

<u>Phytoplankton.</u> To estimate phytoplankton biomass, collect duplicate samples for chlorophyll *a* at the surface and at 0.5 m depth intervals. Use a spectrophotometer for sample analysis before and after acidification. Do cell counts (at 400X magnification) on dominant phytoplankton species to establish species distribution and composition, i.e. green algae, flagellates, dinoflagellates, diatoms and blue-green algae.

<u>Benthic microalgae.</u> Collect intertidal and subtidal benthic core samples for chlorophyll *a* (biomass) analysis. Collect five samples at each station (generally a minimum of five stations). Analyse samples using a recognised technique, e.g. HPLC. Record the relative abundance of dominant algal groups, i.e. green algae, dinoflagellates, diatoms and blue-green algae and identify the dominant species.

At each station also measure:

- Water salinity and inorganic nutrients.
- Sediment particle size distribution and organic content.
- Light penetration PAR or Secchi disk depth.

A sampling station is defined as a location at a specific 'distance from the mouth' that can be sampled at different depth intervals (e.g. in the case of phytoplankton). For larger estuaries (> 5.0 km long), ten to 15 stations selected geographically along the entire length of the estuary, covering the different salinity zones, can be used as the guideline. Stations should preferably be set at fixed intervals. A rough estimate for setting the distance between stations is to divide the length of the estuary by ten (i.e. if an estuary is 30 km long, the distance between stations should be about three km).

Salinity zones in estuaries typically include:

- Fresh (river water)
- 0 10 ppt.
- 10 20 ppt.
- 20 35 ppt.

9.3.2 Baseline data

<u>Comprehensive Reserve.</u> Sampling should be conducted seasonally, (i.e. during spring, summer, autumn and winter) for two years with river inflow being representative of a particular season. Sampling should coincide with the water quality survey and the invertebrate surveys in year one.

9.3.3 Long-term monitoring

Phytoplankton (water column). Conduct a summer and winter survey, followed by a summer, to be repeated every three years.

Benthic microalgae. Conduct a summer and winter survey, followed by a summer, to be repeated every three years.

Notes:

Measurements of (water -) salinity, temperature, other physico-chemical properties and inorganic nutrients need to be made during the microalgal surveys. Combining water and sediment quality surveys on a particular estuary with the microalgal survey does this most cost-effectively.

The temporal scale of the microalgal sampling needs to match that of the invertebrates (zooplankton) to link the response patterns of these biotic components as best as possible. Microalgae may be used in long-term monitoring to indicate whether there is a functional river-estuary interface zone, but baseline data is needed to verify if this is an issue in the Palmiet estuary. Microalgae can also be used effectively in long term monitoring as an indicator of water quality problems.

9.4 MACROPHYTES

9.4.1 Sampling Procedure

The following information needs to be captured from recent and any available historical aerial photographs and ortho-photographs covering the entire estuary as defined by the geographical boundaries, including:

- The number of different habitats (plant community types).
- The area covered by each plant habitat.
- Any historical change in area covered by plant habitat.
- The extent of anthropogenic impacts (agriculture, flood plain development).

Field data need to be collected for ground truthing of aerial photographs:

- The number of different plant habitats (plant community types).
- The area covered by each plant habitat.
- A species list for each plant habitat.
- The extent of anthropogenic impacts such as grazing, trampling, alien vegetation, boating, bait digging.

Permanent transects (sampling stations) need to be set up for long term monitoring of changes in plant habitats, including:

- Transects set up along an elevation gradient
- Duplicate quadrats (1 m²) along the elevation transects, which record the percentage cover of each plant.

The saltmarsh area in the Palmiet Estuary is small, so the following data from at least one transect need to be collected:

- Elevation profile and water level.
- Water column salinity and turbidity.
- Sediment salinity, moisture content and sediment composition.

In large supratidal salt marsh areas, boreholes are required to measure the depth to the water table and ground water salinity. A sampling station is defined as a transect across the estuary (at a specific 'distance from the mouth'), with a number of quadrats arranged along the transect.

<u>Aerial photos.</u> The entire estuary needs to be covered, as defined by the geographical boundaries.

<u>Transects and quadrats</u>. As a guide, the larger estuarine plant habitats in a system (e.g. salt marsh), representing the lower two transects and the middle two transects, should be covered. Other plant habitats, particularly those sensitive to changes in freshwater inflow, could also be monitored.

9.4.2 Baseline data

<u>Comprehensive Reserve.</u> A survey of the permanent transect/s needs to be conducted during an open and a closed phase, to develop an understanding of the relationship between the macrophytes and the mouth conditions.

Figure 9.1 Map of the Palmiet Estuary indicating the recommended location of the transect to be used for the vegetation survey

An assessment of any changes to the areas occupied by intertidal and supratidal salt marsh may be made from aerial photographs, GIS mapping and perhaps satellite images. This is necessary because Transects A and B do not represent the supratidal salt marsh areas of the estuary, and species may occur outside of the areas sampled by the transects. A holistic mapping exercise is therefore essential.

9.4.3 Long-term monitoring

An open and closed mouth survey should be undertaken every three years, but additional aerial photographs taken during intermediate years should also be analysed. Generally, a temporarily open/closed estuary (TOCE) is sampled in the stable open phase but the Palmiet Estuary should also be sampled during the closed phase to examine the extent and biomass of the macroalgal bloom.

Past surveys have investigated transects in the lower reaches of the estuary. An understanding of the freshwater requirements of the large supratidal salt marsh area in the Palmiet Estuary is also required. An assessment of the relationship between plant cover and depth to groundwater, the role of tidal and freshwater inflow in influencing water table depth, and the availability of water to the plants is needed. Hence transects should also be placed in the middle reaches of the estuary. Long-term data are now available for Transects A, B and C, as indicated in Figure 9.1. These transects should be monitored in the future.

There are four different habitat types (see Table 9.1) recognised for the Palmiet Estuary and these should be mapped to assess changes over time.

Habitat Type	Indicator, indicator species				
Open surface	Indicates available babitat for phytoplankton				
water area					
Intertidal	Indicatos available babitat for intertidal bonthis microalgae				
sandflats	Indicates available habitat for intertidal benthic finctioalgae				
Macroalgae	Cladophora spp., Ulva spp.				
	Dominant species were the rush, Juncus kraussii and the grass Sporobulus				
Intertidal salt	virginicus. Other species present include Triglochin striata, Cotula coronopifolia,				
marsh	Stenotaphrum secundatum, Plantago crassifolia, Samolus porosus and Isolepis				
	verrucosula.				

 Table 9.1
 Palmiet Habitat types and indicator species

9.5 INVERTEBRATES

9.5.1 Sampling Procedure

<u>Zooplankton.</u> Collect quantitative samples <u>after dark</u>, preferably during neap tides (mid to high tide), because currents are less strong and zooplankton will be more active in the water column. The sample is therefore more representative. Sampling should be done at mid-water level, i.e. not at the surface. Two net trawls (WP2 and 200 micron mesh) representing two replicate samples should be taken at each station. The net should be pulled for three minutes per station (10.0 -12.0 m³ of water) at 0.15 knots diagonally across the estuary at each site. Record the abundance (density per volume) of each species in each trawl and average the results over the two replicates for each station. At each station phytoplankton samples (i.e. water column sample) and benthic microalgae samples need to be collected for chlorophyll-*a* analyses.

<u>Benthic invertebrates.</u> Collect (subtidal) samples using a Zabalocki-type Eckman grab sampler with six to nine randomly placed grabs (replicates) at each station. Collect intertidal samples at spring low tide using a core sampler with a minimum diameter of 150 mm and

depth of 250 mm, with six to nine replicates at each site along the transect. Grab/core sample should then be placed in a 500-micron sieve bag and the contents gently sifted so as to remove fine particles. Animals and any other relatively coarse material are then stored in formalin for identification in the laboratory. At least six replicates are required per station. For intertidal benthic invertebrates that are not well quantified by core sampling (e.g. mud prawns, sand prawns, some crabs), count overall density for each species in 0.25m² minimum quadrat areas, with five replicates at each station.

The following must be completed at each site:

- Identify fauna to the lowest taxon possible.
- Record animal density and species abundance (animals per m²).
- Record the presence of *Zostera* or other macrophytes at the site.

At each station, sediment samples need to be collected for particle size analysis (250 ml) and organic content (250 ml) using standard techniques. Other parameters that must be measured at each site are temperature, salinity, oxygen, conductivity, turbidity, chlorophyll-*a* and pH. Measurements should be taken at the surface, 0.5 m 1.0 m from the surface and thereafter at 1.0 m depth intervals.

<u>Macrocrustaceans.</u> Quantitative sampling for macrocrustaceans should be conducted during neap tides (mid to high tide), at the same stations used for zooplankton. Use a benthic sled (80 cm x 80 cm, with a 500 micron mesh) attached to a flow meter to collect the sample; tow for 30 metres diagonally across the estuary. Take two samples at each station. Set two prawn/crab traps per station overnight (more applicable to sub-tropical areas).

Identify fauna to the lowest taxon possible. Record the number of species and determine densities for each species.

A sampling station is defined as a specific location in the estuary (at a specific 'distance from the mouth') from where a number of replicates are collected.

Sampling stations must take into account the salinity zones characteristic of a particular estuary, which typically include:

- Fresh (river water)
- 0 10 ppt.
- 10 20 ppt.
- 20 35 ppt.

These zones should be indicated on a map and, within each of the salinity zones, the following habitat representatives need to be sampled:

- Submerged macrophytes (e.g. *Zostera* beds).
- Soft sediments (sand, muddy sand and fine mud), hard (rocky areas) and organic rich areas.
- Benthic invertebrate stations must also include intertidal bird feeding areas.

As a guideline 10 to 15 stations should be selected in larger systems. In small estuaries (<4-5 km in length) the minimum number of sites should not be less than five. These should be located geographically along the entire length of the estuary, covering the salinity zones and habitat types as described above. This may vary depending on the diversity of habitats in the estuary. Stations should preferably be set at fixed intervals or positions. A rough

estimate for setting the distance between stations is to divide the length of the estuary by ten (i.e. if an estuary is 30 km long, the distance between stations should be about three km).

9.5.2 Baseline data

Currently no baseline data exists for subtidal invertebrates. The current breaching policy of keeping the mouth open from late September/October to April is best suited to the current understanding of intertidal invertebrates that require a marine phase of development during their respective life cycles.

Intermediate Reserve. Subtidal invertebrates. Conduct one invertebrate survey during a low flow and one during a high flow season. A stable closed phase must be sampled as well as a stable open phase. Further samples should also be taken during other sampling programmes if possible.

Zooplankton, benthic invertebrates and macrocrustaceans. One survey in summer/spring and one survey in winter to be taken each year over a period of two years. It is important that samples be taken during a state of the estuary (determined by the extent of saline intrusion and the state of the mouth) that is representative of the particular season that sampling is taking place. In addition, one survey needs to be conducted in a stable closed phase and one in a stable open phase or wet and dry.

<u>Comprehensive Reserve.</u> Subtidal invertebrates. Similar to the intermediate level Reserve requirements, except that sampling should be conducted seasonally, (i.e. during spring, summer, autumn and winter) for two years with the level of river inflow being representative of that particular season. Sampling should coincide with other sampling programmes whenever possible.

Zooplankton, benthic invertebrates and macrocrustaceans. To be conducted in four seasons over two years (i.e. in spring, summer, autumn and winter in each year). At the time of sampling, the state of the estuary, as represented by the extent of saline intrusion and the state of the mouth, must be representative of that particular season. At least one survey must be conducted in a stable closed phase, and at least two surveys in the stable open phase.

9.5.3 Long-term monitoring

Macrocrustaceans. Conduct a summer and winter survey every three years.

Zooplankton. Conduct a summer and winter survey every three years.

Benthic invertebrates. Conduct a summer and winter survey every three years.

These surveys should be conducted during the open and closed phases of the estuary. Common estuarine copepods will be used as indicators of estuarine condition.

Notes:

Data collected during this study has indicated an inherent diversity of the larger invertebrates. Although some species were not monitored in the past, the policy of current mouth management appears to be successfully sustaining the current level of invertebrate diversity.

Longer-term data sets are also critical, as natural spatial and temporal fluctuations in population densities are accommodated. It is therefore recommended that further surveys continue, although focusing only on two transects may be sufficient in the future. Species that have a marine phase of development in their life cycle should also be monitored, especially the proportion of juveniles and females with eggs. This information is important to evaluate a population's response to mouth management.

As a result of high variability of invertebrate abundances in response to flow, it is important to sample over two years, in order to obtain the required confidence level (medium for intermediate level and high for comprehensive assessments).

An intense sampling regime with an extended temporal component has been proposed due to a total lack of information on invertebrates in most of South Africa's estuaries. There may also be a rapid change in community composition and abundance over shorter periods of time (weeks to months). Zooplankton respond even more rapidly in the short term, thus the proposed sampling regime is even more intensive.

As far as possible, the invertebrate, microalgal and macrophyte sampling stations should be matched to be able to link habitats with invertebrate characteristics.

Water characteristics (salinity, temperature, pH, dissolved oxygen and turbidity), and sediment quality (sediment grain size and organic content) measurements should also be collected during the invertebrate surveys. Combining water and sediment quality surveys on a particular estuary with the invertebrate surveys was found to be more cost-effective.

For invertebrate surveys, seven sediment grain size categories should be used, ranging from mud to very coarse sand. Each category relates to a particular size diameter in the following manner:

- >2.0 mm: very coarse sand;
- 2.0 1.0 mm: very coarse sand;
- 1.0 0.5 mm: coarse sand;
- 0.5 0.25 mm: medium sand;
- 0.25 0.125 mm: fine sand;
- 0.125 0.0625 mm: very fine sand; and
- <0.0625 mm: mud (silt and clay).

The percentage organic content of sediments can roughly be classified as:

- <0.5 %: Very low;
- 0.5 2 %: Low;
- 1 2 %: Moderately low;
- 2 –4 %: Medium; and
- > 4 %: High.

9.6 FISH

9.6.1 Sampling Procedure

The Palmiet Estuary is shallow and small enough to allow sampling to be restricted to the use of seine and gillnets as primary gears.

<u>Seine nets.</u> Seine nets should be 30 m long and 2.0 m in depth. The cod end (bag and purse) and the wings 5.0 m to either side should be 5.0 mm bar mesh, whereas the remaining 15 m of each wing may be 15 mm bar mesh. This is required to adequately sample estuarine and 'faster moving' marine species. The net should be weighted such that it sinks below the surface when set in water deeper than 2.0 m (i.e. the distance between the lead and cork lines). A light net makes it more difficult to obtain a representative sample from weed and sandy areas, e.g. flatfish species tend to burrow in the sand and escape under a light seine.

<u>Gill nets.</u> Monofilament gill nets should comprise at least three different mesh sizes between 40 - 150 mm stretch mesh. Monofilament gill nets should comprise at least four nets (or panels) of which one net comprises 44, 48, 51 and 54 mm mesh, and an additional three nets made in the range 75 - 150 mm stretched mesh (e.g. 75 100 and 145 mm stretched mesh). If time permits, either fyke nets or longlines should be used to sample eels in the freshwater reaches immediately above the estuary.

At each sampling station the following data need to be recorded:

- Species present.
- Number of each species.
- Size frequency distributions in total length.

The estuary needs to be sampled from the mouth to the weir at the head of the estuary. An additional seine above the weir to gauge if any estuarine fish manage to bypass it would be ideal. Because the system is small six seine sites 200-300 m apart would be sufficient. Three gillnet sites would be sufficient; the mouth region, middle reaches and head of the estuary.

The following habitat representatives should be sampled:

- Submerged macrophytes (e.g. *Cladophera, Enteromorpha*).
- Sandy/muddy/rocky areas (representing different food sources).
- Near or in saltmarsh areas.

9.6.2 Baseline data

<u>Comprehensive Reserve.</u> Samples should be taken seasonally (i.e. each quarter during spring, summer, autumn and winter) over one year. The temporal scale needs to address recruitment patterns as well as species distribution within habitats in different seasons. Also, at the time of sampling, the state of the estuary must be representative of the season in which samples are collected, as indicated by the extent of saline intrusion and the state of the mouth. At least one survey must be conducted in a stable closed phase.

9.6.3 Long-term monitoring

For TOCEs, such as the Palmiet, late summer and spring surveys should be conducted <u>within</u> a three-year period to ensure that conditions representative of stable open and closed phases are captured.

Sampling should be done immediately after any fish kill, followed by another one to two months after the event. This should be budgeted for in a contingency fund.

Notes:

Fish are one of the most reliable indicators of the health of an estuary. Different estuary types (e.g. TOCEs) have typical fish assemblages. The response of fish to any environmental or anthropogenic influences is usually more rapid and more easily measured than other biotic variables such as vegetation. Consequently, problems are detected sooner, and mitigatory measures more rapidly implemented.

The Palmiet is a typical blackwater south coast estuary in the cool/warm temperate transition zone, and is an important nursery area for at least 20 fish species. The first pulse of recruitment of the juveniles of many important species, such as white steenbras (*Lithognathus lithognathus*), usually occurs during September but may be as early as late August. It is imperative that the mouth remains open from September onwards to facilitate recruitment of these species.

Gill nets are valuable in determining the seasonal changes in the distribution of the adults of larger fish species along-stream. For example, it has been found that 44, 48, 51 and 54 mm mesh sizes are needed to obtain a representative sample of the different mullet species in the south-western Cape. The 44 mm mesh catch tends to be dominated by *Liza dumerilii*, the 48 mm by *L. richardsonii* and the 51 and 54 by *L. tricuspidens*, *Myxus capensis* and *Mugil cephalus*. Monofilament nylon nets should be used rather than woven nylon nets, as the latter have a completely different capture efficiency.

Non-destructive sampling should be practiced whenever possible. The survival rate of larger fish is much greater if they are removed from a gill net by cutting the mesh as this is easily repaired afterwards, whereas most seined fish can be measured and released alive. If there are abundant fish in a sample 100 individuals per species should be measured, the rest counted and released. However, it must be accepted that some fish, especially clupeids, die very easily.

The primary goal of fish sampling is to obtain the species composition and size class frequencies of the different fish species present in the system. Gill nets are necessary to sample those fast swimming species and larger individuals that are not captured in the seine nets.

Water quality measurements (salinity, temperature and other physico-chemical properties) need to be collected during the fish surveys. Combining water quality surveys on a particular estuary with the fish surveys was found to be most cost-effective. Fish are more responsive to flow changes, than for example estuarine invertebrates or vegetation, making these good indicator species.

In TOCEs, not all pre-selected sites may be assessed using the same equipment during various sampling trips, for example protective backwater areas. This is acceptable, as long as representative sites are monitored in the same salinity regime to allow for extrapolation to other habitat types.

9.7 BIRDS

The Palmiet Estuary is not a particularly important estuary for birds. Nevertheless, it is recommended that birds be included in the monitoring programme, since they contribute to the attraction of the area and because the estuary has been identified as a core estuary for conservation (Turpie and Clark 2007).

9.7.1 Sampling Procedure

Undertake full bird counts of all water-associated birds. If the mouth is open, this should take place during a spring low tide. The estuary should be divided into three counting areas – the upper estuary above the intertidal flats, the lower estuary and the supratidal sandspit at the mouth. The following should be recorded:

- The number of birds of each species (at low tide)
- The number of people on the estuary at time of counting.
- Take note of any roosting aggregations.
- The state of the mouth and water levels.

The area covered must include the entire estuary and its floodplain, incorporating all habitats used by water-associated birds for feeding, breeding or roosting.

The upper boundary of the study area is the same as that for the overall study, i.e. the weir just above the road bridge. The seaward boundary should be taken as the high tide mark on the beach side of the berm and the point that the estuary meets the sea.

Any major bird roost site in close proximity to the estuary should be counted and mapped.

9.7.2 Baseline data

Birds should be counted every month for one year.

9.7.3 Long-term monitoring

Conduct a summer and a winter count of all the waterbirds on the estuary every year. Because of the low numbers and high variability, more counts would be better.

Notes:

The summer count should take place in February or preferably March, but not later. Counts earlier than February would might be compromised in quality by the presence of summer holiday-makers. Human disturbance on estuaries is known to have a significant impact on bird numbers.

Because of the small number of birds and easy access for counting (which can be done on foot), if is recommended that this be carried out or co-ordinated by Cape Nature as part of their normal monitoring and patrols, possibly with the help of a local resident amateur birdwatcher. These data could be submitted to the Animal Demography Unit's Coordinated Waterbird Counts (CWAC) programme. The data should nevertheless be housed with a local committee and made freely accessible to specialists working on the conservation of the area.

10 LONG-TERM MONITORING DECISION SUPPORT SYSTEM (DSS)

The proposed Monitoring Decision Support System (MDSS) to be applied in the long-term monitoring of estuaries, as part of the RDM process, is illustrated in Figure 10.1. It is assumed that the baseline requirements for aiotic (drivers) and biological components have been specified in terms of their relation to the Recommended Ecological Category (REC), in this case a Category C+.

Figure 10.1 Proposed Monitoring Decision Support System (MDSS) to be applied in the long-term monitoring of estuaries

11 **REFERENCES**

- Barnes, K.N. 2000. The Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland.
- Bennett, B.A. 1981 Ecology of the fish in the Palmiet River Estuary. Report to the Department of Environmental Planning and Energy
- Bennett, B.A. 1989a A comparison of the fish communities in nearby permanently open, seasonally open and normally closed estuaries in the south-western Cape, South Africa. S. Afr. J. mar. Sci. 8: 43 –55.
- Bennett, B.A. 1989b The diets of fish in three south-western Cape estuarine systems. S. Afr. J. Zool. 24(3): 163-177.
- Branch, G.M. and Day, J.A. 1984. Ecology of southern African estuaries: Part XIII. The Palmiet River estuary in the south-western Cape. S. Afr. J. Zool. **19**(2): 64 77.
- Clarke, B.C. 1989. Estuaries of the Cape: Part II. Synopses of available information on individual systems. Rep. No. 37 Palmiet (CSW 12). Heydorn A E F and Morant P D (Eds). Stellenbosch, CSIR Research report 436.
- CSIR 1980. Effect of the proposed Hangklip Dam on Palmiet River mouth. Stellenbosch, CSIR report C/SEA 8048. Stellenbosch.
- CSIR 1988. Dynamics of the Palmiet River mouth. Stellenbosch, *CSIR Report* **EMA/T 8802**. Stellenbosch.
- CSIR 1992. The freshwater requirements of the Palmiet Estuary A first assessment. Contract report submitted to Ninham Shand Consulting Engineers. *CSIR Report* **EMAS-C 92019**. Stellenbosch.
- CSIR 2000. Palmiet River water resource management plan. Summary Report: Requirements of the estuary. CSIR Report ENV-S-C 2000-48. Stellenbosch.
- Department of Water Affairs and Forestry (DWAF) 2004. Water resource protection and assessment policy implementation process. Resource directed measures for protection of water resources: Methodology for the Determination of the Ecological Water Requirements for Estuaries. Version 2. Pretoria.
- Dollar, E.S.J., Brown, C.A., Turpie, J.K., Joubert, A.R., Nicolson, C.R. and Manyaka, S. (2006) The development of the Water Resource Classification System (WRCS). Volume 1. Overview and 7-step classification procedure. CSIR Report No., Department of Water Affairs and Forestry, Pretoria, 70pp.
- DWA 1995. South African water quality guidelines for coastal marine waters. Volume 1: Natural Environment. Pretoria.
- Heydorn and Morant (eds) (1989) Estuaries of the Cape: Part II. Synopses of available information on individual systems. Rep. No. 37 Palmiet (CSW 12). Stellenbosch, *CSIR Research report* **436**.
- Huizinga, P. and Smith, C.J. 1987. Computation of flow through the Palmiet Estuary mouth. *CSIR Report* **T/Sea 8706**. Stellenbosch.
- Largier, J.H. and Taljaard, S. 1991. The dynamics of tidal intrusion, retention and removal of seawater in a bar-built estuary. *Estuarine, Coastal and Shelf Science* **33**: 325-338.

- Largier, J.L. 1986. Structure and mixing in the Palmiet Estuary, South Africa. S. Afr. J. mar. Sci. 4: 139-152.
- Largier, J.L., Slinger, J.H. and Taljaard, S. 1992. The stratified hydrodynamics of the Palmiet a prototypical bar-built estuary. In: *Dynamics and exchanges in estuaries and the coastal zone*. Prandle, D. (Ed.) Coastal and Estuarine Studies 40. New York, Springer and Verlag. pp. 135-153.
- Morant, P.D. 1984. Estuaries of the Cape Part II: Synopsis of available information on individual systems (A.E.F. Heydorn and J.R. Grindley Eds.). Report No. 26: Olifants. *CSIR Research Report* **425**. Stellenbosch.
- Slinger, J.H. and Largier, J.L. 1990. The evolution of thermohaline structure in a closed estuary. *Sth. Afr. J. Aquat. Sci.* **16**(1/2): 60-77.
- Taljaard, S. 1987. Nutrient circulation in the Palmiet River Estuary: A summer study. *CSIR Research Report* **633**. Stellenbosch. 113 pp.
- Taljaard, S. and Largier, J.L. 1989. Water circulation and nutrient distribution in he Palmiet River Estuary: A winter study. *CSIR Research Report* **680**. Stellenbosch. 38 pp.
- Taljaard, S. Eagle, G.A.and Hennig, H.F.-K.O. 1986. The Palmiet Estuary: A model for water circulation using salinity and temperature measurements over a tidal cycle. *Water SA* 12(3): 119-126.
- Taljaard, S., Van Niekerk, L., Huizinga, P., Joubert, W. 2003. Resource Monitoring Procedures for Estuaries for Application in the Ecological Reserve Determination and Implementation Process. CSIR Report ENV-S-C 2003-059.
- Turpie, J.K. 1995. Prioritising South African estuaries for conservation: a practical example using waterbirds. *Biological Conservation* **74**: 175-185.
- Turpie, J.K. 1998. Potential impacts of altered river flows on the birds of the Palmiet River estuary. Unpublished report to CSIR Environmentek.
- Turpie, J.K. and Clark, B.M. 2007. The health status, conservation importance, and economic value of temperate South African estuaries and development of a regional conservation plan. Report to CapeNature.
- Underhill, L.G. and Cooper, J. 1984. *Counts of waterbirds in southern African coastal wetlands.* Unpublished computer printout. Western Cape Wader Study Group and Percy FitzPatrick Institute of African Ornithology, University of Cape Town. 252pp.
- Van Ballegooyen R., Taljaard S., van Niekerk L. and Huizinga P. (2004). Using 3D modelling to predict physico-chemical responses to variation in river inflow in smaller, stratified estuaries typical of South Africa. *Journal of Hydraulic Research* Vol. 42, No. 6, pp. 563–577.
- Van Niekerk, L & Taljaard, S. 2007. Proposed generic framework for Estuarine Management Plans. Report submitted to C.A.P.E. Estuaries Programme.
- Whitfield, A.K. 1994 An estuary-association classification for the fishes of southern Africa. S. Afr. J. Sci. 90: 411-417.

APPENDIX A: SUMMARY OF DATA AVAILABLE FOR THE RDM INVESTIGATIONS UNDERTAKEN DURING 2007 AND 2008

A1. ABIOTIC COMPONENTS

Data Required	Current Status			
Simulated monthly runoff data (at the head of the estuary) for present State, Reference Conditions and the selected future	Provided for 77-year period by Auercon Consulting Engineers			
runoff scenarios over a 50 to 70 year period.	(low confidence in runoff data).			
Simulated flood hydrographs for Present State Reference				
Conditions and future runoff scenarios:				
• 1:1 1:2 1:5 floods (influencing aspects such as floodplain	No now hydrographa wara ayailahla			
inundation);	No new nydrographs were available.			
• 1:20 1:50 1:100 1:200 year floods (influencing sediment				
dynamics).				
Series of sediment core samples for the analysis of particle size				
observations) taken every five years along the length of an	No data			
estuary (200 m intervals)				
Series of cross-section profiles (collected at about 50 to 100 m				
intervals) taken every five years to monitor the sediment	Last survey used in this study was 1999.			
deposition rate in an estuary.				
Set of cross-section profiles and a set of sediment grab samples				
for analysis of particle size distribution (PSD) and origin (i.e.	No data			
using microscopic observations) need to be taken immediately				
after a major flood.				
most recent)	Historical photos available.			
Measured river inflow data (gauging stations) at the head of the	Continuous river inflow measured at DWA Station G4H007 at the			
estuary over a five - 15 year period.	Welgemoed (weir) just upstream of estuary			
Continuous water level recordings near mouth of the potuary	Data records available from DWA water level recorder G4R009-			
	A01 near the mouth.			
Water level recordings at about five locations along the length of				
the estuary over a spring and a neap tidal cycle (i.e. at least a 14	None.			
day period).				
over a spring and peap tide during high and low tide at:				
• end of low flow season (i.e. period of maximum seawater	Dec 1979 (Branch and Day 1984) ; Feb 1985 (Taljaard et al			
intrusion);	1986 ; Taljaard 1987) ; Aug 2006 (Taljaard and Largier 1989);			
• peak of high flow season (i.e. period of maximum flushing by	Jan, Feb, Mar April 1998 (CSIR 2000)			
river water).				
Water quality measurements (i.e. system variables, and				
nutrients) taken along the length of the estuary (surface and	Dec 1979 (Branch and Day 1984) ; Feb 1985 (Taljaard et al			
bollom samples) on a spring and heap high lide al.	1986; Taljaard 1987); Aug 1986 (Taljaard and Largier 1989);			
 end of how now season peak of high flow season 	Jan, Feb, Mai April 1996 (CSIR 2000)			
Diurnal time series data of the oxygen concentration in the				
estuary at three stations along the system during the periods that	No data			
the fish and invertebrates are samples.				
Measurements of organic content and toxic substances (e.g.				
trace metals and hydrocarbons) in sediments along length of the	Station G4H007Q01 at the weir just upstream of estuary			
estuary.				
vvater quality (e.g. system variables, nutrients and toxic	Available data (DM/AE 1005)			
of the estuary	Available Uala (DWAF 1995)			
	Dec 1979 (Branch and Day 1984) ; Feb 1985 (Taliaard et al			
vvater quality (e.g. system variables, nutrients and toxic	1986 ; Taljaard 1987) ; Aug 2006 (Taljaard and Largier 1989);			
substances) measurements on near-shore seawater.	Jan, Feb, Mar April 1998 (CSIR 2000)			

A2. BIOTIC COMPONENTS

Micro Algae – Data Required For Comprehensive Level	Current Status
Phytoplankton: Chlorophyll-a measurements taken at the surface, 0.5 m and 1 m depths. Cell counts of dominant phytoplankton groups, i.e. flagellates, dinoflagellates, diatoms and blue-green algae. Measurements must be taken coinciding with typically high and low flow conditions.	Branch and Day 1984;
Benthic microalgae: Intertidal and subtidal benthic chlorophyll-a measurements. Epipelic diatoms need to be collected for identification. These measurements must to be taken coinciding with a typical high and low flow condition.	Adams and Bate (unpub. data).

Macrophytes - Data Required For Comprehensive Level	Current Status			
Aerial photographs of the estuary (ideally 1: 5000 scale) reflecting the present state, as well as the reference condition (if available).	Some collected by DEAT.			
Available orthophotographs.				
Number of plant community types, identification and total number of macrophyte species, number of rare or endangered species or those with limited populations documented during a field visit.	Branch and Day 1984			
 Permanent transects: Measurements of percentage plant cover along an elevation gradient. Measurements of salinity, water level, sediment moisture content and turbidity. 	None.			

Collect a set of six benthic samples each consisting of five grabs. Collect two each from sand, mud and interface substrates. If possible, spread sites for each between upper and lower reaches of the estuary. One mud sample should be in an organically rich area. Species should be identified to the lowest taxon possible and densities (onimelation) must glas be determined. Second (i.e.	
 densities (animals/m) must also be determined. Seasonal (i.e. quarterly) data sets for at least one year are required, preferably collected at spring tides. Collect two sets of beam trawl samples (i.e. mud and sand). Lay two sets of five, baited prawn/crab traps overnight, one each in the upper and lower reaches of the estuary. Species should be identified to the lowest taxon possible and densities (animals/m²) must also be determined. Survey as much shoreline as possible for signs of crabs and prawns and record observations. Seasonal (i.e. quarterly) data sets for at least one year are required, preferably collected at spring tides. Collect three zooplankton samples, at night, one each from the upper, middle and lower reaches of the estuary. Seasonal (i.e. quarterly) data sets for at least one year are required, preferably collected at spring tides. 	le data collected in the early 1980's (Branch and nd rapid, follow up check by Bickerton in 1998.

Fish - Data Required For Comprehensive Level	Current Status
Sampling should be representative of small fish (seine nets) and large fish (gill nets). Sampling should be done in all four seasons for the full extent of the system (as far as tidal variation) to allow for predictive capabilities. In a larger estuary (>5 km) sampling can either be at fixed intervals (every 2 km) or have the upper, middle and lower reaches subdivided into at least a further three sections each. The samples should be representative of the different estuarine habitat types, e.g. <i>Zostera</i> beds, prawn beds, sand flats. At least one of the sample sets should be in the 0 - 1 ppt. reach of the system.	 Bennett, B.A. 1981. Ecology of the fish in the Palmiet River Estuary. Report to the Department of Environmental Planning and Energy. Bennett BA (1989a) A comparison of the fish communities in nearby permanently open, seasonally open and normally closed estuaries in the south-western Cape, South Africas <i>Afr. J Mar Sci.</i> 8:43–55 Bennett BA (1989b) The diets of fish in three south-western Cape estuarine systems. <i>S. Afr. J. Zool.</i> 24(3): 163-177. Branch, G.M. and J.A. Day 1984 – Ecology of southern African estuaries: Part XIII. The Palmiet River Estuary in the south-western Cape. <i>S. Afr. J. Zool.</i> 19(2):64-67. Clarke, B.C. 1989 - Estuaries of the Cape Part II: Synopses of available information on individual systems (A.E.F Heydorn and P.D. Morant, Eds.). Report No. 37: <i>Palmiet. (CSW 12)</i> <i>CSIR Research Report</i> 436: 82 pp. Harrison TD (1999a) A preliminary survey of the estuaries on the south-west coast of South Africa, Cape Hangklip-Cape Agulhas, with particular reference to the fish fauna. <i>Trans Roy Soc S Afr</i> 54:257–283. Limited sampling 1997/1998 Lamberth unpublished.
Birds - Data Required For Comprehensive Level	Current Status
Undertake one full count of all water associated birds covering	ourish olato
as much of the estuarine area as possible. All birds should be identified to species level and the total number of each counted. Monthly data sets for at least one year are required. If this is not possible, a minimum of four summer months and one winter month will be required (decisions on the extent of effort required will depend largely on the size of the estuary, extent of shallows present as well as extent of tidally exposed areas)	Summer counts available for 1981 and 1997.

APPENDIX B: Summary of baseline data requirements and the long-term monitoring programme

Summaries of the Baseline Data Requirements and the Long-Term Monitoring Programme are included in Tables B1 and B.2 respectively. These take the earlier described details into account and also include the specific actions and associated human resources to obtain such data.

The activities have been prioritised in the tables, using colour coding, as follows:

High priority, considered as a minimum requirement for a suitable
baseline data set (blue indicates data sets linked to the closed state, a
condition that was supposed to be sampled as part of the Intermediate
RDM study, but which has not occurred).
Medium Priority, will improve the confidence of the baseline, and should
be added if funding is available.
Low priority, will further improve the confidence of the baseline, but is not
considered to be a critical factor in the case of the Palmiet Estuary.

The purpose of long-term monitoring programmes, in this context, is to assess (or audit) whether the Ecological Specifications (defined as part of the Ecological Reserve determination process) are being complied with <u>after implementation</u> of the Reserve. In addition, these programmes can also be used to improve and refine the Ecological Reserve measures (including the Ecological Specifications), in the longer-term through an iterative process (Taljaard *et al.* 2003)

Although baseline studies and long-term monitoring programmes have different purposes, it is extremely important that long-term monitoring programmes follow on from similarly structured baseline studies. In essence, the monitoring activities selected for the long-term monitoring programme should be derived from the monitoring activities conducted as part of the baseline studies, but implemented on a less intensive spatial and/or temporal scale (Taljaard *et al.* 2003).

Table B.1 Summary o	of data requirements to	set a baseline for long-term	monitoring in the Palmiet Estuary
---------------------	-------------------------	------------------------------	-----------------------------------

	Ecological Component	Monitoring Action	Temporal Scale (Frequency and When)	Spatial Scale (No. of Stations)
ĺ		Toxic substances (herbicides/pesticides) in river inflow	Monthly over a wet and dry season	DWA Station G4H007
		Organic nutrients (C, N and P) (dissolved and particulate) in river inflow	Monthly for one year	DWA Station G4H007
	Water Quality	Organic nutrients (C, N and P) flux across the estuary-sea boundary	Intensive survey during marine dominated state (State 3)	Mouth of estuary
	Accumulation of benthic organic nutrients (C, N and P) in estuary	Once-off intensive survey during closed/semi-closed states	Entire estuary, focussing on depositional areas.	
	Accumulation of toxic substances (e.g. selected pesticides/herbicides) in sediments (if contamination in river inflow is significant)	Once-off intensive survey during closed/semi-closed states	Entire estuary, focussing on depositional areas.	
Hydrodynamic	Continuous water level recordings.	Continuous.	At Station G4R009 near mouth. Already undertaken by DWA.	
	Accurate flow gauging of river inflow to estuary.	Continuous.	At Station G4H007, weir just upstream of estuary. Already undertaken by DWA.	
		Aerial photographs of estuary (photographed at spring low tide) at 1:2000 scale.	Every five years.	Entire estuary.
		Near-shore wave data records (only if available).		
	Codiment dunamico	Bathymetric survey: series of cross-sections and a longitudinal profile collected at about 300m intervals, but in some locations a previous survey. More detailed at the mouth. Vertical accuracy should be better than 2 cm.	Five years, with an additional three surveys (every two months) after a major flood event to establish the rate of deposition in the system	Entire estuary.
	Sediment dynamics	Set of sediment grab samples at cross-sections for grading analysis.	Once off.	Entire estuary.
		Set of core samples (2.0 m) save at cross-sections for grading analysis, age and origin (Isotope analysis).	Once off.	Entire estuary say every 1.0 km.
		Sampling of suspended sediment (and organic matter) required to quantify actual sediment and organic yield and variability.	Weekly, but daily during floods, for at least five years.	Upstream of estuary.
	Macrophytes	Two field visits to update the GIS vegetation map by identifying the distribution of the different plant community types and species. However this would not capture the dynamics of the submerged macrophytes or macroalgal that would need to be monitored on at least a monthly basis.	At least once during an open and closed mouth condition.	Entire estuary.

Ecological Component	Monitoring Action	Temporal Scale (Frequency and When)	Spatial Scale (No. of Stations)			
Microalgae	Phytoplankton and Benthic microalgae: sample for biomass and species composition during an open and closed mouth condition to establish baseline conditions. For phytoplankton chlorophyll <i>a</i> measurements taken at the surface, 0.5 m and 1 m depths. Cell counts of dominant phytoplankton groups, i.e. flagellates, dinoflagellates, diatoms, chlorophytes and blue-green algae completed for the different sites. For benthic microalgae measure intertidal and subtidal benthic chlorophyll <i>a</i> and epipelic diatoms need to be collected for identification.	At least once during an open and closed mouth condition.	Five stations along the length of the estuary.			
	Collect quantitative samples for zooplankton after dark. Zooplankton samples to be collected at mid-water level where possible. Chlorophyll- <i>a</i> data must be collected at all sites and on all sampling occasions.	Samples to be collected in the dry and wet season over two years. Times should be selected to maximise low and high flow conditions.	Collections at five sites.			
Invertebrates	Subtidal benthic samples to be collected using a grab sampler and sieved through 500 micron aperture mesh.	Samples to be collected in the dry and wet season over two years. Times should be selected to maximise low and high flow conditions.	Collections at five sites that correspond to the zooplankton stations.			
	Setting of prawn and crab traps.	Samples to be collected in the dry and wet season over two years. Times should be selected to maximise low and high flow conditions.	Collections to be done in the uppermost part and in the lower reaches.			
Fish	Conduct fish surveys using both seine and gill nets as primary gear.	Quarterly over one year, covering all four seasons and representative of temperature and average river inflow of that season. Both open and closed mouth phases need to be monitored in a particular year, with particular emphasis on juvenile marine fish recruitment.	Entire estuary (6).			
Birds	Waterbird counts for the whole estuary.	Monthly counts over a period of one year and counting at low tide when open. A high level of replication is justified by the variability of the system, and the ease with which it can be counted.	Entire estuary (divided into three sections).			

Table B.2 Long-term monitoring programme proposed for the Palmiet Estuary

			Temporal scale (frequency and		Human Resources (as days/year)						
Ecological component	Monitoring action	Related TPC		Spatial scale (no. of stations)	Samp	ling	Analysis		Repor	ting	
			timing)	(,	Scientist	Tech	Scientist	Tech	Scientist	Tech	
Water Quality	Conductivity, temperature, suspended matter, dissolved oxygen, pH, inorganic nutrients and organic content in river inflow.	WQ3	At least monthly	At Station K2H002Q01, weir just upstream of estuary	Already included in DWA's water quality monitoring programme.						
	Longitudinal salinity and temperature profiles (<i>in situ</i>)	WQ1 WQ2	Measured when biotic surveys require information for interpretation, alternatively every three years	Entire estuary (5 stations)	-	2	-	-	1	-	
	Water quality measurements along length of estuary (surface and bottom samples) for pH, dissolved oxygen, suspended solids/turbidity/Secchi, inorganic nutrients and particulate organic nutrients.	WQ4 to WQ9	Measured when biotic surveys require information for interpretation, alternatively every three years	Entire estuary, plus sampling points in river and sea (7 stations).	See related component samples ca collected as biotic surve	l biotic s - in be s part of y.	<i>In situ</i> measurements. Accredited analytical laboratory.		1	-	
	Survey on benthic organic nutrients and toxic substances accumulation (e.g. selected pesticides).	WQ10 to WQ11	Every six years, if deemed necessary in future	Focus on depositional areas	-	2	Depend on parameters selected. Accredited analytical laboratory.		1	-	
	Water level recordings.	H1 to H4	Continuous	At causeway near mouth.	Included in DWA national monitoring			1	-		
Hydrodynamics	Flow gauging.	H1 to H4	Continuous	One station at position representative of inflows to estuary.	Include in E	Include in DWA national monitoring programme.			1	-	
	Aerial photographs of estuary (spring low tide).	H1 to H4	Five years	Entire estuary	Should be national coa	recommer astal surve	nded for inclus	sion in DEAT	1	-	
Sediment	Bathymetric survey: series of cross-section profiles and a longitudinal profile collected at fixed 300 m intervals, but more detailed in the mouth (vertical accuracy better than 2 cm).	S1 - S3	Five years	Entire estuary			1		4		
	Set sediment grab samples (at cross section profiles) for analysis of particle size distribution (PSD) and origin (i.e. using microscopic observations.	S4 – S6	Five years	Entire estuary					1		

			Temporal scale (frequency and timing)		Human Resources (as days/year)						
	Monitoring action	Related TPC		Spatial scale (no. of stations)	Compling				Deperting		
Ecological component					Samp		Ana		Repor		
					Scientist	lech	Scientist	lech	Scientist	lech	
	Suspended sediment and organic matter.		during floods	Upstream of estuary					10		
Phytoplankton	Phytoplankton biomass (chlorophyll a) measurements taken at the surface, 0.5 m and 1.0 m depths. Cell counts of dominant phytoplankton groups, i.e. flagellates, dinoflagellates, diatoms, chlorophytes and blue-green algae. Measurements for the open and closed mouth condition.	A1 and A2	One year after reserve implementation thereafter every three years	Five stations			2		2	3	
Benthic microalgae	Benthic microalgae biomass (intertidal and subtidal benthic chlorophyll <i>a</i>) measurements. Epipelic diatoms need to be collected for identification. Measurements for the open and closed mouth condition.	A3 and 4	One year after reserve implementation thereafter every three years	Five stations	2			2	3		
Maccrophytes	Use aerial photographs to quantify area covered by different plant community types and produce a vegetation map for the open mouth condition. Conduct field surveys during the closed and open mouth condition to document the species composition and area covered by the different plant community types. Measure salt marsh and macroalgal (isubmerged macrophyte if present) percentage cover in 1.0 m ² quadrats along three permanent transects (one for saltmarsh/macroalgae and two macroalgae transects. Sample for macroalgal biomass in the lower reaches of the estuary. Measure sediment characteristics, depth to groundwater and groundwater salinity along the salt marsh transects.	M1– M5	One year after reserve implementation thereafter every three years.	Entire estuary	2			2	3		
Invertebrates	Collect quantitative samples for zooplankton after dark. Zooplankton samples to be collected at near- surface and mid-water level, depending on water depth. Chlorophyll-a data must be collected at all sites and on all sampling occasions. High priority.	I1 and I2	Samples to be collected twice a year. Times should be selected to maximise low and high flow conditions.	All five or six sampling sites			2		4	-	

Ecological component	Monitoring action	Related TPC	Temporal scale (frequency and timing)	Spatial scale (no. of stations)	Human Resources (as days/year)					
					Sampling		Analysis		Reporting	
					Scientist	Tech	Scientist	Tech	Scientist	Tech
	Subtidal benthic samples to be collected using a grab sampler and sieved through 500 micron aperture mesh. High priority.	I1 and I2	Samples to be collected twice a year. Times should be selected to maximise low and high flow conditions.	All five sampling sites.			2		4	-
	Hole counts to establish sand prawn densities. A representative sample of the population to establish size class distribution. High priority.	Once a year at the end of summer after the dry season. At sites in the middle and lower estuary. 2					2	-		
	Collect shrimps and prawns that are non-burrowers	I1 and I2	Samples to be collected twice a year. Times should be selected to maximise low and high flow conditions.	In uppermost section of the estuary, abd in the lower reaches.			2		2	-
Fish	Conduct fish surveys using both seine and gill nets as primary gear.	F1 - 4	Two years after implementation conduct a closed/semi-closed and open phase survey, followed by two surveys every three years thereafter.	Entire estuary (6 stations)			2		3	1
Birds	Bi-annual bird counts of the estuary.	B1 and 2	Mid-summer and mid-winter.	Whole estuary			1		0	1